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The Bargaining Problem

Bargaining is a general name for a class of interactions between
several (two or more) players aimed at allocation of some resources
between them.
Examples include negotiations betwen spouses, neighbours, friends,
workers and employers, firms sharing the market, countries etc.
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Bilateral Bargaining

The simplest case is bilateral bargaining, for which there are many
canonical games:

� Nash bargaining solution (1950) defines equilibrium by the product of
excess utilities, (u(x) − d(x))× (u(y) − d(y)), subject to utility
invariance, symmetry, Pareto and IIA axioms.

1Seller is uninformed but has all bargaining power, then maxp(1− F (p))(p − c)

results in (1−F (p∗))
f (p∗)

= (p∗ − c) implying efficiency losses if p∗
> c
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Multilateral Bargaining
Unlike bilateral, multilateral bargaining involves three or more players
solving the same problem.

� Voting in bodies matters in many contexts (boards of directors,
shareholders’ meetings, parliaments, United Nations...)
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Cooperative games

A cooperative game is a pair 〈N, v〉, where N is the set of players,
and v : 2|N|−1 → R is the characteristic function that assigns payoff
to every possible coalition.
Usually we consider transferable utility (TU) games, where payoffs
can be transferred across coalition members; and superadditive games
where v(S ∪T ) ≥ v(S)+ v(T ) whenever S ,T ⊆ N satisfy S ∩T = ∅.
Example: left and right shoes game
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Solution concepts
� The von Neumann-Morgenstern stable set is a set of imputations (allocations

of the pie) x , y ... such that x dominates y if some coalition S 6= ∅ satisfies
xi > yi ,∀ i ∈ Sand

∑

i∈S
xi ≤ v(S). In other words, players in S prefer the

payoffs from x to those from y , and they can threaten to leave the grand
coalition if y is used because the payoff they obtain on their own is at least as
large as the allocation they receive under x . A stable set is a set of imputations
that satisfies two properties:

Internal stability No payoff vector in the stable set is dominated by another
vector in the set.

External stability All payoff vectors outside the set are dominated by at least
one vector in the set.

� The core C(v) =
{

x ∈ RN :
∑

i∈N xi = v(N);
∑

i∈S xi ≥ v(S),∀ S ⊆ N
}

—
an imputation when no coalition has incentives to leave the grand coalition to
get larger payoffs.

� The kernel svij (x) = max
{

v(S)−
∑

k∈S
xk : S ⊆ N \ {j}, i ∈ S

}

,

is the set of imputations where no player i has more bargaining power than
player j in the sense that each player j is immune to player i ’s threats if
xj = v(j), because he can obtain this payoff on his own.
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Voting power: main notions

� N — set of agents (players), |N| = n, with generic player i

� wi > 0 — number of votes i possesses

� q — quota (minimum number of votes for a bill to pass)
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� v(S) — payoff to the coalition S . Let v(S) = 1 iff
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� Player i 6∈ S is pivotal for the coalition S iff S is losing, while
S ∪ {i} is not (thus, i is decisive)
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Classical power indices

� Banzhaf (1965): βi =
∑

S⊆N\{i}(v(S∪{j})−v(S))
∑N

j=1

∑
S⊆N\{j}(v(S∪{j})−v(S))

This is a share of player i ’s decisiveness in the total decisiveness.
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∑N

j=1

∑
S⊆N\{j}(v(S∪{j})−v(S))

This is a share of player i ’s decisiveness in the total decisiveness.

� Shapley-Shubik (1954):

φi =
∑

S⊆N\{i}
|S|!(N−|S|−1)!

N! (v(S ∪ {i} − v(S)).
This is the share of permutations of all coalitions S in which player
i is pivotal in the total number of permutations, i.e. the Shapley
value for the cooperative voting game.
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Preference-based power indices

(Aleskerov, 2006). Assume we know the preference profile of each
player i about coalescing with any other player: Pi = (pi1, ..., pin).

Let pij be (ordinal or cardinal) measure of, or explicit modifiers of
player i ’s preferences towards coalescing player j .
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∑

S⊆N\{i} fi (S) (v(S ∪ {i})− v(S)) be the sum of
intensities of connection of player i over all the winning coalitions in
which she is pivotal.

Similarly to the Banzhaf index, let

αi =
∑

S⊆N\{i} fi (S)(v(S∪{i})−v(S)))
∑N

j=1

∑
S⊆N\{j} fj(S)(v(S∪{i})−v(S))
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Power indices with preferences

Particular forms of the intensity of connections functions include

� f ×i (S) =
∏

j∈S\{i} pij — multiplicative intensity of i ’s preferences.

� f ÷i (S) =
∏

j∈S\{i} pji — dual multiplicative intensity.

� ... and many others.
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Experimental design (Montero, Sefton, Zhang, Soc

Choice Welfare, 2008)

� Unstructured bargaining (Baron-Ferejoin 1989) game in groups of
3 or 4 players (12 or 16 participants per session).

� In each round of each game the players of a group decide on how
to divide 120 points among them. Each player can post at most
one offer at a time, and can vote for any offer on the board.

� The first offer to meet the quota is accepted, and the players
receive the corresponding number of points unless they fail to
come to an agreement within 300 seconds, in which case all receive
0 points.

� All players are randomly rematched from round to round.

11 / 46



Features of our experiment (Aleskerov, Belianin,

Pogorelskiy, 2009)

� 2 games are played in each experimental session in randomized
block order.

� With or without preferences (explicit modifiers).

� Games were played in Moscow, Perm and Tomsk in October 2008 -
March 2010, using specially developed experimental software.

� Participants — over 500 students of various department, gender
composition 50-50, average age 19.1 years.

� Gains of participants in 10-round games: average 7.62 EUR,
minimum — 3.81 EUR, maximum — 13.68 EUR; gains in
20-round games: average 10.65 EUR, minimum 5.38 EUR,
maximum 16.81 EUR per 1- to 1.5-hour session.
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Screenshot of a typical game Standard (S)
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Games S–1 (Standard) [4; 3, 2, 2]
Game S: quota is 4 votes

player# 1 2 3

votes 3 2 2

Winning coalitions: W = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Banzhaf (and Shapley-Shubik) index: β1 = β2 = β3 = 1/3, predicting
that all players get around 40 pts each. Game 1 uses the following
explicit modifiers:

1 2 3

1 - 1 1

2 1 - 1.01

3 1 1 -

α indices based on the f ÷ intensity function:
α1 = α2 = 0.3328, α3 = 0.3344
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The S-1 games
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The S-1 games
� Player 3 on average receives systematically more in the
1–treatment (43.85) than in S–treatment (35.84), which difference
is significant. Hence explicit modifiers work for player 3: ’being
loved is better than love’.

� There are no treatment effects for players 1 and 2, but ...
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� Player 3 on average receives systematically more in the
1–treatment (43.85) than in S–treatment (35.84), which difference
is significant. Hence explicit modifiers work for player 3: ’being
loved is better than love’.

� There are no treatment effects for players 1 and 2, but ...
� Player 2 receives systematically more than either of the other
players in the S-treatment (46.5 vs. 35.84 or 37.66), the difference
being significant.
� Same effect as in MSZ, who attribute it to ‘framing effect’
� We specify: positioning of player 2 in the middle of the game table

makes him receiving twice more offers from two immediate neighbours
(1 and 3) than the other two players who have just one neighbour
(player 2).

player# 1 2 3
votes 3 2 2

proposed shares x y z

� Effects in an implicit modifier to player 2’s payoff.16 / 46



Way out: symmetric positioning

� In SC-1C games, each player is shown in the middle of the table in
a systematic (clockwise) rotation.

� The difference between player 2 and the others in S-games is
mitigated to (40.50 vs. 39.40 or 40.06), and becomes insignificant
� We conjecture that the effect of implicit modifier is to completely

disappear in a fully symmetric treatment.

� Explicit modifiers’ effect persists for player 3, although to a
somewhat smaller extent and over the last rounds.

� Average number of offers in games S (1) — 2.13 (resp., 2.42).

� Average time per round in games S (1) — 30 (resp., 37) seconds.
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Results: SC–games
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Summary of the S-1 games

All (N = 320) mean s.d. min max

player 1 35.36 29.04 0 80

player 2 44.53 24.42 0 100

player 3 40.1 27.56 0 111

Game S

player 1 37.40 29.44 0 80

player 2 46.25 23.89 0 100

player 3 36.34 28.05 0 110

Game 1

player 1 33.32 28.57 0 80

player 2 42.81 24.91 0 99

player 3 43.85 26.62 0 111
� No significant difference in payoffs for players 1 and 2.
� Significant difference for player 3 at 1-2% confidence level.
� Centered treatment suppresses implicit modifiers.
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Games V–2 (Veto)
Game V: quota is 5 votes

player# 1 2 3

votes 3 2 2

Winning coalitions W = {{1, 2}, {1, 3}, {1, 2, 3}}.
Banzhaf: β1 = 3/5, β2 = β3 = 1/5, shares [72, 24, 24].
Shapley-Shubik: σ1 = 2/3, σ2 = σ3 = 1/6, shares [80, 20, 20].
Game 2 uses the following explicit modifiers:

1 2 3

1 - 1 1

2 0.99 - 1

3 0.99 1 -

α indices based on the f × intensity function:
α1 = 0.6016, α2 = α3 = 0.1992
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Results:V–2 games
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Summary of the V-2 games

All (N = 160) mean s.d. min max

player 1 84.29 24.99 0 120

player 2 19.76 20.97 0 70

player 3 13.56 18.42 0 60

Game V

player 1 81.90 24.76 0 119

player 2 22.56 23.40 0 70

player 3 15.53 19.99 0 60

Game 2

player 1 86.68 25.14 0 120

player 2 16.96 17.94 0 60

player 3 11.60 16.59 0 60
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Results: V–2 games

� Player 1 (the veto player) gets even more than the Banzhaf index
predicts.

� No significant difference across treatments.

� Effects of greater negative modifiers might be larger.

� Average number of offers in games V (2) — 5.94 (resp., 5.63).

� Average decision time in games V (2) — 147 (resp., 141) seconds.
Timing of decisions requires further attention.
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Games E–3 (Enlarged)
Game E: Again, 5 votes are required to reach an agreement

player# 1 2 3 4

votes 3 2 2 1

Winning coalitions W = {{1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. Banzhaf (and Shapley-Shubik):
β1 = 5/12, β2 = β3 = 3/12, β4 = 1/12, shares [50, 30, 30, 10].
Game 3 employs the following modifiers:

1 2 3 4

1 - 1 1 1

2 0.99 - 1 1

3 1 1 - 1

4 1 1 1 -

α indices based on the f × intensity function:
α1 = 0.5005, α2 = 0.1992, α3 = 0.2002, α4 = 0.100124 / 46



The E–3 games
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Summary of the E-3 games

All (N = 160) mean s.d. min max

player 1 61.15 25.76 0 100

player 2 30.63 23.82 0 70

player 3 24.73 24.54 0 70

player 4 3.49 9.00 0 70

Game E

player 1 64.34 22.36 0 95

player 2 31.65 23.17 0 70

player 3 21.23 23.72 0 70

player 4 2.76 7.40 0 40

Game 3

player 1 57.95 28.47 0 100

player 2 29.59 24.48 0 70

player 3 28.23 24.90 0 65

player 4 4.21 10.33 0 70
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Summary of the E-3 games

� In E-game player 1 gets systematically more than the Banzhaf
index prediction at the expense of player 4, while gains of players 2
and 3 are in line with the index, and are greater than in the V–2

treatment.
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� In E-game player 1 gets systematically more than the Banzhaf
index prediction at the expense of player 4, while gains of players 2
and 3 are in line with the index, and are greater than in the V–2

treatment.

� Player 3 gains a statistically significant increase in the average
payoff.
� Thus, a small negative modifier towards player 1 indirectly benefits

player 3, (gain per session increases by 25%).

� Frequency of coalitions {2, 3, 4} is ×2 higher in the 3–game than
in the E–game.
� Means that players 2, realizing they do not like player 1, tend to

switch to a larger coalition, even though it is clearly more difficult and
may involve lowering one’s share of the pie (has to be divided among
3 players instead of 2 ).
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Games F–4
Game F: 6 votes required to reach an agreement

player# 1 2 3 4

votes 3 3 2 2

Winning coalitions W = {{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4}, {1, 2, 3, 4}}. Banzhaf index is
β1 = β2 = 1/3, β3 = β4 = 1/6, 1 and 2 get 40, 3 and 4 get 20.
Game 4 employs the following modifiers:

1 2 3 4

1 - 0.8 1 1.01

2 0.8 - 1 1.1

3 1 1 - 1

4 1 1 1 -

α indices based on f × intensity function:
α1 = 0.3107, α2 = 0.3583, α3 = α4 = 0.2002.
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The F–4 games
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Summary of the F–4 games

All (N = 160) mean s.d. min max

player 1 39.95 10.97 17.55 63.75

player 2 44.32 9.68 15.81 62.25

player 3 15.24 5.75 5.88 32.50

player 4 15.35 5.87 5.63 31.88

Game F

player 1 48.43 6.34 39.38 63.75

player 2 45.97 10.02 25.00 62.25

player 3 12.95 4.68 5.88 22.88

player 4 12.66 4.95 5.63 22.88

Game 4

player 1 31.48 7.46 17.55 41.66

player 2 42.67 9.30 15.81 55.80

player 3 17.53 5.90 7.50 32.50

player 4 18.04 5.58 7.50 31.88
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Results: F-4 games

� ’Large’ negative modifier of player 2 for player 1 significantly lowers
her earnings (48.43 vs 31.48).

� On the contrast, player 2’s payoff does not change much.

31 / 46



Results: F-4 games

� ’Large’ negative modifier of player 2 for player 1 significantly lowers
her earnings (48.43 vs 31.48).

� On the contrast, player 2’s payoff does not change much.

� Complex interaction of modifiers: high ’dislike’ modifiers of 0.8
tend to hurt player 1 more than player 2 because player 2 more
strongly prefers larger coalitions.

� We also investigated another explanation – that the psychological

features of the subjects’ characters essentially influence their
behaviour.
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Coalitional outcomes across treatments
coalitions � games S–1 games V–2 games

S-1 coalitions S 1 V-2 coalitions V 2
1&2 54 33 1&2 41 40
2&3 29 33 2&3 27 26
2&3 56 59 1&2&3 12 10

1&2&3 21 35 1 alone 0 1
other 0 0 none 0 3
total 160 160 total 80 80

coalitions � games E–3 games F–4 games
E-3 coalitions E 3 F-4 coalitions F 4

1&2 73 74 1&2 82 64
2&3 57 51 1&3&4 38 31

2&3&4 13 26 2&3&4 33 56
1&2&3 5 1 1&2&3 1 1
1&2&4 1 3 1&2&4 1 0
1&3&4 1 1 1&3 0 1

1&2&3&4 9 3 1&4 0 0
none 1 0 1&2&3&4 4 6
total 160 160 total 160 160
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Offers by roles, S-1 games

player observations mean std.dev

all coalitions

1 1155 35.46 28.86

2 1155 43.02 24.97

3 1155 41.51 27.12

{1,2} coalitions

1 196 61.74 7.48

2 196 58.25 7.48

3 196 0 0

{1,3} coalitions

1 166 59.88 10.47

2 166 0 0

3 166 60.12 10.47

{2,3} coalitions

1 274 0 0

2 274 59.26 4.51

3 274 60.73 4.51
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Offers by roles, F-4 games

player observations mean std.dev
all coalitions

1 1280 42.59 27.66
2 1280 46.01 25.82
3 1280 15.49 15.00
4 1280 15.53 15.25

{1,2} coalitions
1 580 60.26 3.72
2 580 59.75 3.72
3 580 0 0
4 580 0 0

{1,3,4} coalitions
1 276 60.65 10.30
2 276 0 0
3 276 29.83 5.17
4 276 29.52 5.41

{2,3,4} coalitions
1 356 0 0
2 356 61.73 8.08
3 356 29.01 4.42
4 356 29.26 4.61

Composition of the winning coalition explains over 90% of shares’ variations!
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Typical bargaining process, S-games

x0 = 0, 0, 0
x11 = 100, 10, 10 (0 seconds, initial offer by player 1)
x23 = 65, 0, 55 (5 seconds, player 3 rejects offer by 1)
x32 = 0, 60, 60 (0 seconds, player 2 makes a better offer to player 3)
x43 = 0, 60, 60 (13 seconds, player 3 accepts offer by 2)
This bargaining process is intuitively clear, but qualitatively
different from the logic of most of the literature!
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Interpretation
� An overwhelming majority of the outcomes result in minimal

winning coalitions.
� Explicit modifiers are of secondary importance; by contrast, people
use simple heuristic strategies that are not captured by either
classical or generalized power indices (in their present formulation).

� The best predictors for the model are players’ roles and the
composition of the winning coalition.

S-1 60-60 for all three winning coalitions
V-2 85-25 for the coalitions {1, 2} and {1, 3}, the rest

being ’noise’
E-3 70-50 for the {1, 2} and {1, 3} coalitions, and

50-50-20 for the {2, 3, 4} coalition.
F-4 60–60 for the {1, 2} coalition, and the 60–30–30 for

the {1, 3, 4} and {2, 3, 4} coalitions.
� How can we describe this evidence?
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Key paradigms

� Describe the behavior of players in a bargaining game in a
non-structured experiment (unlike most approaches, such as Baron
and Ferejohn, 1989; Eraslan and McLennan, 2013 or Drouvelis,
Montero, Sefton, 2009, we do not want to impose particular
bargaining protocol)

� Theory of social situations: noncooperative game in search of a
cooperative solution (Greenberg, 1989; Monderer e.a., 1996; Chwe,
1998; Xue, 1999; Herning e.a., 2007).

� Communication games: values for cooperative games constrained
on a graph (Myerson, 1977; van den Nouweland, 1993; Jackson
and Wolinsky, 1996; van den Brink, 2009; Gonzales-Aranguena
e.a., 2008)

� The Nash programme: provide a noncooperative foundation for
cooperative games solution (Serrano, 2007).
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Strategic Approach to Nonstructured Bargaining I

� Noncooperative approach (Eraslan, 2003): assume the following
axioms hold

Rationality No player ever makes an offer that gives her less than
she can get from any other existing offer

Efficiency
∑

i∈S ψi (g) = v(S)
Improvement No player can make an offer that worsens the stake

of any of the players in any minimal winning
coalition.

� Proposition: In an S–1 game with the Rationality, Efficiency and
Improvement axioms, the only noncooperative Nash equilibrium is
given by equal partitions within minimal coalitions.
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Strategic approach II: dynamic incentives

1 2

3

Player 2 is priviledged after the first proposal is made to him, as he
has more options (accept an offer, in addition to his offers), then offer
of player 3 gives additional option to player 1 etc. All these
developments change the Myerson value dynamically as the game
goes on.
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The Myerson value

� g ∈ G is a nondirected graph in the set of N players

� S/g = {{i : i and j are connected by g}|j ∈ S} be the coalition
constrained by g

� The Myerson value is a function ψ : 2N × G → RN satisfying

Efficiency
∑

i∈S ψi (g) = v(S)
Fairness ψi (g ∪ i)− ψi(g) = ψj(g ∪ j)− ψj(g)

� Myerson (1977) shows that the Myerson value is a unique function
satisfying Efficiency and Fairness (or Balanced contributions
property — Myerson, 1980); it coincides with the Shapley value if
g is a complete graph

� Recently, Gonzales-Aranguena e.a. (2008) have extended the
Myerson value to directed graphs (digraphs).
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The process of strategic bargaining
Each offer and each voting changes the strategic situation.
Let X t

i be the set of strategies of player i at time t.
Example: Suppose there is an S-game, and player 1 has made an offer
to player 2. Then

� X 1
1 = { wait till another offer (W), offer a different bid (O), wait if

2 accepts (E)}
� X 1

2 = { wait till another offer (W), offer a different bid (O), accept
1’s offer (A)}

� X 1
3 = { wait till another offer (W), offer a different bid (O)}

Assuming all offers are being made simultaneously, each player
anticipates random evolution of the graph, and chooses

x t∗i = arg max
x t
i
∈X t

i

u(x ti ,Ex
t∗
−i ),∀i , j , t

at each stage of the game, altering the Myerson value at each stage.
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Dynamics of the Myerson values

F-game, bargaining path
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Strategic Approach to Nonstructured Bargaining II

Consider a general simple cooperative game (S , v) over the set of all
possible game states X (incorporating future possible states and
beliefs of players about these).
Assumption 1: The set of states is locally compact
Assumption 2: The improvement correspondence
Γ ≡ ×N

i=1µi : X → [0, 1] (is the product correspondence of possible
dynamic Myerson values) is upper semicontinuous mapping from the
set X onto itself
Proposition: If ΓX is nonempty and convex, there exists a fixed
point in X , which is the set of equilibrium states.
Uniqueness: to be developed.
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Conclusions
� Explicit modifiers work in all treatments of the S–1 games, and
increase the payoff of player 3 by about 21%. Effects for the other
players are not significant.

� Implicit modifiers in the S–games can be suppressed by centering
the players and other means.

� Explicit modifiers (probably) do not work in the V–2 games.
� The intensity of connections of other players to the given player i
(in some contexts) matters more for her payoff.

� Explicit modifiers work in the enlarged treatments as well.
� Negative modifiers significantly affect the frequency of the respective

coalitions in the E–games: players tend to switch to a larger coalition
comprising the players with neutral modifiers.

� Modifiers of opposite nature interact in a complex manner.
� Predictive power of the classical power indices is ambiguous: the
best explanatory variables are player role and winning coalitions.
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Q & A

The latest version of the paper can be downloaded from
http://epee.hse.ru/project

(the website of the Laboratory for Behavioral and Experimental
Economics, State University - Higher School of Economics)
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