Jutline	Voting power	Experimental setup	Results	Concl

usions

Power and preferences: an experimental approach

Fuad Aleskerov¹ Alexis Belianin² Kirill Pogorelskiy³

¹Department of Economics, Higher School of Economics, and Institute of Control Sciences, Moscow, Russia ²ICEF Higher School of Economics, and Institute for World Economy and International Relations, Moscow, Russia ³Department of Economics, Higher School of Economics, Moscow, Russia

> 27 October 2009 CEMI, Moscow

Voting power

- Concept of voting power
- Preference-based power indices
- 2 Experimental setup
 - Experiment by Montero, Sefton and Zhang (MSZ)
 - Design and participants
- 3 Results
 - Games S–1
 - Summary of the S-1 games
 - Games V–2
 - Games E–3
 - Games F–4
 - Further summaries

4 Conclusions

Outline	Voting power ●○○○○○○○	Experimental setup	Results	Conclusions
Voting	power matters			

• in parliaments (will a multi-party parliament pass a new anti-trust law?)

A (1) > (1) > (1)

æ

_∢ ≣ ≯

Outline	Voting power	Experimental setup	Results	Conclusions

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)
- in the UN Security Council (should Iran be sanctioned?)

A⊒ ▶ ∢ ∃

Outline	Voting power	Experimental setup	Results	Conclusion
	0000000		0000000000	

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)
- in the UN Security Council (should Iran be sanctioned?)
- in the IMF (should the developing countries have more voice in the Fund?)

A (1) > (1) > (1)

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)
- in the UN Security Council (should Iran be sanctioned?)
- in the IMF (should the developing countries have more voice in the Fund?)
- in boards of directors (do we invest or not?)
- etc...

Outline	Voting power ○●○○○○○○	Experimental setup	Results	Conclusions
Voting p	ower: main no	otions		

• N — set of agents (players), |N| = n, with generic player i

・ロン ・四と ・ヨン ・ヨン

æ

Outline	Voting power ○●○○○○○○	Experimental setup	Results	Conclusions
Voting	; power: main no	otions		

- N set of agents (players), |N| = n, with generic player i
- $w_i > 0$ number of votes *i* possesses

< @ ▶ < 注 ▶ < 注 ▶

æ

- N set of agents (players), |N| = n, with generic player i
- $w_i > 0$ number of votes *i* possesses
- q quota (minimum number of votes for a bill to pass)

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- N set of agents (players), |N| = n, with generic player i
- $w_i > 0$ number of votes *i* possesses
- q quota (minimum number of votes for a bill to pass)

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

 Coalition S ∈ 2^N is winning iff ∑_{i∈S} w_i ≥ q (denote W the set of all winning coalitions)

- N set of agents (players), |N| = n, with generic player i
- $w_i > 0$ number of votes *i* possesses
- q quota (minimum number of votes for a bill to pass)
- Coalition S ∈ 2^N is winning iff ∑_{i∈S} w_i ≥ q (denote W the set of all winning coalitions)
- v(S) payoff to the coalition S. Let v(S) = 1 iff $S \in W, v(S) = 0$ iff $S \notin W$

- N set of agents (players), |N| = n, with generic player i
- $w_i > 0$ number of votes *i* possesses
- q quota (minimum number of votes for a bill to pass)
- Coalition S ∈ 2^N is winning iff ∑_{i∈S} w_i ≥ q (denote W the set of all winning coalitions)
- v(S) payoff to the coalition S. Let v(S) = 1 iff S ∈ W, v(S) = 0 iff S ∉ W
- Player $i \in S$ is *pivotal* in the coalition S iff S is winning, while $S \setminus \{i\}$ is not

< □ > < @ > < 注 > < 注 > ... 注

• Banzhaf (1965): $\beta_i = \frac{\sum_{S \subseteq N} (v(S) - v(S \setminus \{i\}))}{\sum_{j=1}^N \sum_{S \subseteq N} (v(S) - v(S \setminus \{j\}))} = \frac{b_i}{\sum_j b_j}$ Here b_i is the number of coalitions in W in which i is pivotal. This is a share of player i's decisiveness in the total decisiveness.

• Banzhaf (1965): $\beta_i = \frac{\sum_{S \subseteq N} (v(S) - v(S \setminus \{i\}))}{\sum_{j=1}^N \sum_{S \subseteq N} (v(S) - v(S \setminus \{j\}))} = \frac{b_i}{\sum_j b_j}$ Here b_i is the number of coalitions in W in which i is pivotal. This is a share of player i's decisiveness in the total decisiveness.

- Banzhaf (1965): $\beta_i = \frac{\sum_{S \subseteq N} (v(S) v(S \setminus \{i\}))}{\sum_{j=1}^N \sum_{S \subseteq N} (v(S) v(S \setminus \{j\}))} = \frac{b_i}{\sum_j b_j}$ Here b_i is the number of coalitions in W in which i is pivotal. This is a share of player i's decisiveness in the total decisiveness.
- Shapley-Shubik (1954): $\phi_i = \sum_{S \subseteq N} \frac{(|S|-1)!(N-|S|)!}{N!} (v(S) - v(S \setminus \{i\})).$ This is the share of permutations of all coalitions S in which player *i* is pivotal in the total number of permutations in which any player is pivotal, i.e. the Shapley value for the cooperative voting game.

イロト イヨト イヨト イヨト

Outline	Voting power	Experimental setup	Results	Conclusions
Example				

Suppose
$$N = \{1, 2, 3\}, w_1 = 50, w_2 = 45, w_3 = 5, q = 51$$
. Then
 $W = \{\{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$
 $b_1 = 3, b_2 = 1, b_3 = 1$.

< □ > < □ > < □ > < □ > < □ > .

æ

In this example,

Banzhaf
$$\beta_1 = 3/5; \beta_2 = \beta_3 = 1/5.$$

Shapley-Shubik $\phi_1 = 2/3; \phi_2 = \phi_3 = 1/6.$

Outline	Voting power	Experimental setup	Results	Conclusions
	0000000			

(Aleskerov (2006)). Assume we know the preference profile of each player *i* about coalescing with any other player: $P_i = (p_{i1}, ..., p_{in})$.

Let p_{ij} be (ordinal or cardinal) measures of preference, or explicit modifiers of player *i* towards coalescing with player *j*.

Outline	Voting power	Experimental setup	Results	Conclusions
	00000000			

(Aleskerov (2006)). Assume we know the preference profile of each player *i* about coalescing with any other player: $P_i = (p_{i1}, ..., p_{in})$.

Let p_{ij} be (ordinal or cardinal) measures of preference, or explicit modifiers of player *i* towards coalescing with player *j*.

Let $f_i : \times_{j \in S} P_j \to \mathbb{R}$ be the *intensity of connections* of player *i* with the other members of the winning coalition *S* she is part of.

Outline	Voting power	Experimental setup	Results	Conclusions
	0000000		0000000000	

(Aleskerov (2006)). Assume we know the preference profile of each player *i* about coalescing with any other player: $P_i = (p_{i1}, ..., p_{in})$.

Let p_{ij} be (ordinal or cardinal) measures of preference, or explicit modifiers of player *i* towards coalescing with player *j*.

Let $f_i : \times_{j \in S} P_j \to \mathbb{R}$ be the *intensity of connections* of player *i* with the other members of the winning coalition *S* she is part of.

Let $\chi_i = \sum_S f_i(S) (v(S) - v(S \setminus \{i\}))$ be the sum of intensities of connection of player *i* over all the winning coalitions in which she is pivotal. Similarly to the Banzhaf index

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Outline	Voting power	Experimental setup	Results	Conclusions
	0000000		0000000000	

(Aleskerov (2006)). Assume we know the preference profile of each player *i* about coalescing with any other player: $P_i = (p_{i1}, ..., p_{in})$.

Let p_{ij} be (ordinal or cardinal) measures of preference, or explicit modifiers of player *i* towards coalescing with player *j*.

Let $f_i : \times_{j \in S} P_j \to \mathbb{R}$ be the *intensity of connections* of player *i* with the other members of the winning coalition *S* she is part of.

Let $\chi_i = \sum_S f_i(S) (v(S) - v(S \setminus \{i\}))$ be the sum of intensities of connection of player *i* over all the winning coalitions in which she is pivotal. Similarly to the Banzhaf index

$$\alpha_i = \frac{\sum_{S \subseteq N} f_i(S)(v(S) - v(S \setminus \{i\}))}{\sum_{j=1}^N \sum_{S \subseteq N} f_j(S)(v(S) - v(S \setminus \{i\}))} = \frac{\chi_i}{\sum_{j=1}^N \chi_j}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Particular forms of the intensity of connections functions include

• $f_i^+(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ — aggregate preferences of player i over joining coalition S

・ 同 ト ・ ヨ ト ・ ヨ ト

Particular forms of the intensity of connections functions include

- $f_i^+(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ aggregate preferences of player *i* over joining coalition *S*
- $f_i^-(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ji}}{|S|-1}$ aggregate preferences of other members of coalition S towards player *i*

(《圖》 《문》 《문》 - 문

Particular forms of the intensity of connections functions include

- $f_i^+(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ aggregate preferences of player i over joining coalition S
- $f_i^-(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ji}}{|S|-1}$ aggregate preferences of other members of coalition S towards player *i*

• $f_i^{\pm}(S) = \frac{f_i^{+}(S) + f_i^{-}(S)}{2}$ — average intensity with respect to *i*.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Particular forms of the intensity of connections functions include

- $f_i^+(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ aggregate preferences of player i over joining coalition S
- $f_i^-(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ji}}{|S|-1}$ aggregate preferences of other members of coalition S towards player *i*
- $f_i^{\pm}(S) = \frac{f_i^{+}(S) + f_i^{-}(S)}{2}$ average intensity with respect to *i*.
- $f_i^{\times}(S) = \prod_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ product intensity with respect to *i*.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Particular forms of the intensity of connections functions include

- $f_i^+(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ aggregate preferences of player i over joining coalition S
- $f_i^-(S) = \sum_{j \in S \setminus \{i\}} \frac{p_{ji}}{|S|-1}$ aggregate preferences of other members of coalition S towards player *i*

• $f_i^{\pm}(S) = \frac{f_i^{+}(S) + f_i^{-}(S)}{2}$ — average intensity with respect to *i*.

- $f_i^{\times}(S) = \prod_{j \in S \setminus \{i\}} \frac{p_{ij}}{|S|-1}$ product intensity with respect to *i*.
- $f_i^{\div}(S) = \prod_{j \in S \setminus \{i\}} \frac{p_{ji}}{|S|-1}$ product intensity with respect to j

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

• ... and many others.

Outline	Voting power	Experimental setup	Results	Conclusions
	00000000			

Power indices with preferences: Example

$$N = \{1, 2, 3\}, w_1 = 50, w_2 = 45, w_3 = 5, q = 51.$$

 $VV = \{(1, 2), (1, 3), (1, 2, 3)\}$ Assume preferences are cardinal and given by:

$$||p_{ij}|| = \begin{cases} \hline 1 & 2 & 3 \\ 1 & \frac{1}{2} & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{cases}$$

Product intensities of connections across coalitions are

Outline	Voting power	Experimental setup	Results	Conclusions
	0000000			

Power indices with preferences: example continued

Sums of intensities of connections over the winning coalitions: Player 1 is pivotal in 3 coalitions, so $\chi_1 = f_1^{\times}(1,2) + f_1^{\times}(1,3) + f_1^{\times}(1,2,3) = 1/2 + 2 + 1/2 = 3$

Player 2 is pivotal in 2 coalitions, so $\chi_2 = f_2^{\times}(1,2) + f_2^{\times}(1,2,3) = 1 + 1/2 = 3/2$

Player 3 is pivotal in 2 coalitions, so $\chi_3 = f_3^{\times}(1,3) + f_3^{\times}(1,2,3) = 2 + 1 = 3$

The generalized power indices are:

$$\begin{aligned} \alpha_1 &= \frac{\chi_1}{\sum_{i=1}^{3} \chi_i} = 2/5, \\ \alpha_2 &= \frac{\chi_2}{\chi_2} = 1/5, \\ \alpha_3 &= \frac{\chi_3}{\sum_{i=1}^{3} \chi_i} = 2/5. \end{aligned}$$

• Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?

A⊒ ▶ ∢ ∃

Outline	Voting power	Experimental setup	Results	Conclusio

ns

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?
- What form of the intensity of connections functions is most warranted empirically?

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?
- What form of the intensity of connections functions is most warranted empirically?
- Generally, what are the factors affecting players' voting behaviour?

Conclusions

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?
- What form of the intensity of connections functions is most warranted empirically?
- Generally, what are the factors affecting players' voting behaviour?
- ... and many others.

Outline	Voting power	Experimental setup	Results	Conclusions
Previous	works			

Brams and Affuso, TD, 1976 notice that adding an extra player affects power indices of the remaining ones ('paradox of the new members').

Kahan and Rapoport, 1984 summarise theoretical and empirical studies of voting in the context of cooperative games.

Selten Kuon, IJGT, 1993 study dynamic bargaining in three-person games

Kagel e.a. 2009 explore the role of veto power

Montero, Sefton, Zhang, Soc.Ch.Welf., 2008 test the paradox of new members experimentally.

Outline

Voting power

Experimental setup

Results Conclusions

Game Standard (MSZ)

	our prop	posal	from here		1'6	proposal				
a subscription of	and the second				B	Subject ID	1	2 frout	3	
Subie	ct ID No.	1	2 (You)	1		Votes	3	2	2	Acceptable (A)
	later.	-				Points	XXX	X00X	XOOK	
V	otes	3	2	1		Altitude	A			Unacceptable (U)
			1		٨	Accumulate	d Votes:	3		
• 5 votes are	needed to e	entorce	a proposal.			Subject ID Votes	3	2	2	Acceptable [A]
* 5 votes are	needed to e	entorce	a proposal.	SL		Subject ID Votes Points Attitude Iccumulated	3 XXX d Vates:	2 XXX A 2	2	Arconptable (A)
* 5 votes are	needed to e	enforce	a proposal.	Si]A	Subject ID Votes Points Attitude Iccumulated proposal	3 XXX d Votes:	2 XXX A 2	2	Acceptable (A)
" 5 vites are	needed to e	enforce	a proposal.	Su	3%	Subject ID Votes Points Attitude Iccumulated proposal Subject ID Votes	3 XXX d Votes:	2 XXX A 2 2 (You)	3	Acceptable (A) Unacceptable (U)
- 5 votes are	needed to e	enforce	a proposal.	Su]A	Subject ID Votes Points Attitude Iccumulater I proposal Subject ID Votes Points	i 3 XXX d Votes: 1 3 XXX	2 XXX A 2 2 (You) 2 XXX	- 2 XXX 3 2 XXX	Acceptable (A) Acceptable (A)
b votes are	needed to e	enforce	a proposal.	Su	3%	Subject ID Votes Points Attitude Iccumulater I proposal Subject ID Votes Points Attitude	i 3 XXX d Votes: 1 3 XXX	2 XXX A 2 2 (You) 2 XXX	2 XXX 3 2 XXX A	Acceptable (A) Unacceptable (U) Acceptable (A) Unacceptable (U)

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy Power and preferences

Outline	Voting power	Experimental setup ○○●○○○○	Results	Conclusions
Design				

- All games were played at HSE campus during October 2008 -May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively

Outline	Voting power	Experimental setup	Results	Conclusions
		000000		000000000000
Decim				

JUB

- All games were played at HSE campus during October 2008 -May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively
- In each round of each game the players of a group decide on how to divide 120 points among them. The decision is made by voting, each player's number of votes differ depending on her role.
- In case the players do not come to an agreement within 300 seconds, they receive 0 pts
| Outline | Voting power | Experimental setup | Results | Conclusions |
|---------|--------------|--------------------|------------|---|
| | 00000000 | 000000 | 0000000000 | 000000000000000000000000000000000000000 |
| Desime | | | | |
| Design | | | | |

- All games were played at HSE campus during October 2008 -May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively
- In each round of each game the players of a group decide on how to divide 120 points among them. The decision is made by voting, each player's number of votes differ depending on her role.
- In case the players do not come to an agreement within 300 seconds, they receive 0 pts
- Each game lasts 10 or 20 rounds (enlarged games), all players are mixed in roles and across groups in each round

Outline	Voting power	Experimental setup	Results	Conclusions
	00000000	000000	0000000000	000000000000000000000000000000000000000
Desime				
Design				

- All games were played at HSE campus during October 2008 -May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively
- In each round of each game the players of a group decide on how to divide 120 points among them. The decision is made by voting, each player's number of votes differ depending on her role.
- In case the players do not come to an agreement within 300 seconds, they receive 0 pts
- Each game lasts 10 or 20 rounds (enlarged games), all players are mixed in roles and across groups in each round
- 2 games are played in each experimental session in randomized block order. At the end of each session, total gains are paid in cash (1 point = 0.01 EUR in Russian Rubles).

Outline	Voting power	Experimental setup ○○○●○○○	Results	Conclusions
Particip	ants			

- 136 BSc and MSc students of various departments of HSE.
- Recruitment through posters and announcement on the web, volunteers are requested to register online. Subjects are invited by email to a particular game.
- Attendance: required additional recruitment on-site.
- Gender composition: about 50:50, average age 19.1 years
- Gains of participants in 10-round games: average 7.62 EUR, minimum — 3.81 EUR, maximum — 13.68 EUR;
- Gains in 20-round games: average 10.65 EUR, minimum 5.38 EUR, maximum 16.81 EUR per 1- to 1.5-hour session.

Outline	Voting power	Experimental setup	Results	Conclusions
		0000000		000000

Summary of experimental sessions

(
1st game	2nd game
S	1
1	V
2	S
SC	1C
1C	2
V	SC
E	3
3	E
F	4
4	F

Games V–2,E–3,F–4 (S–1): the $2 \times 2(\times 2)$ design, controlling for

- sequence of the games
- explicit modifiers
- **o** position of players on the screen (C)

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

≣⇒

Game Standard (S)

- Instruction
- · Shares should sum up to 120
- · You can replace your proposal by a newly submitted one
- · 4 votes are required to pass a proposal
- · You are marked in red where applicable
- Please note that your login name shown at the bottom of this page is NOT your in-game player number! Also beware that your in-game player number may change between rounds

ayer #2's proj	oosal (Total vote	s accu	mulated: 2)
layer number	1	2 (You)	3	
Votes	3	2	2	You have
Proposed shares	45	75	0	this proposal
Acceptance		Y		
ayer #3's proj	oosal (Total vote	s accu	mulated: 2)
ayer #3's proj Player number	posal (1	Total vote 2 (You)	s accu 3	mulated: 2)
ayer #3's proj Player number Votes	005al (1 3	Total vote 2 (You) 2	s accu 3 2	mulated: 2) Vote for
ayer #3's prop Player number Votes Proposed shares	20	Total vote 2 (You) 2 30	s accu 3 2 70	Wote for this proposal

Game Standard with modifiers (1)

- Instruction
- · Shares should sum up to 120
- · You can replace your proposal by a newly submitted one
- · 4 votes are required to pass a proposal
- · You are marked in red where applicable
- Please note that your login name shown at the bottom of this page is NOT your in-game player number! Also beware that your in-game player number may change between rounds
- If you vote for a proposal and it wins, for each of the players voting together with you, your share in the proposal will be multiplied by the corresponding "modifier" value(s) from the table below to get your final payoff in this round.

	1	2	3
1	-	1	1
2	1	-	1.01
3	1	1	-

Player number	1	2 (You)	3	
Votes	3	2	2	You have
Proposed shares	20	60	40	this
Acceptance		Y		
Acceptance layer #3's prop Player number	oosal (1	Y Total vote 2 (You)	s accu 3	mulated: 2
Acceptance layer #3's prop Player number Votes	005al (1 3	Y Total vote 2 (You) 2	s accu 3 2	Wote for
Acceptance layer #3's prop Player number Votes Proposed shares	00sal (1 3 35	Y Total vote 2 (You) 2 25	s accu 3 2 60	Vote for this proposal

イロン イヨン イヨン イヨン

2

•0000000000	
000000	0000000 0000000000000000000000000000000

Games S-1 (Standard)

Game S: In this game 4 votes are required to reach an agreement

player $\#$	1	2	3
votes	3	2	2

Winning coalitions: $W = \{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$. Banzhaf index: $\beta_1 = \beta_2 = \beta_3 = 1/3$, predicting that all players get around **40 pts** each. **Game 1** uses the following *explicit modifiers* which multiply the payoff of the row player if she coalesces with the column player:

	1	2	3
1	-	1	1
2	1	-	1.01
3	1	1	-

 α indices based on the f^{\times} intensity function: $\alpha_1 = \alpha_3 = 0.3327, \alpha_2 = 0.3344$

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Voting power

Experimental setup

Results Conclusions

Results: S-1 games

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Outline	Voting power	Experimental setup	Results 00●00000000	Conclusions
Results: S	-1 games			

- Player 3 on average receives systematically more in the 1-treatment (42.08) than in S-treatment (32.25), which difference is significant. Hence **explicit modifiers** do work for player 3: '*being loved is better than love*'.
- There are no treatment effects for players 1 and 2, but ...

Outline	Voting power	Experimental setup Results		Conclusions
			000000000000000000000000000000000000000	
Roculte: 9	S 1 games			

- Player 3 on average receives systematically more in the 1-treatment (42.08) than in S-treatment (32.25), which difference is significant. Hence **explicit modifiers** do work for player 3: '*being loved is better than love*'.
- There are no treatment effects for players 1 and 2, but ...
- Player 2 receives systematically more than player 3 in both treatments combined (49.89 vs. 37.14), which difference is significant.
 - Same effect as in MSZ, who attribute it to 'framing effect'
 - We attribute it to the position of player 2 in the middle of the table on the screen: player 2 has two neighbours (1 and 3), whereas the other two players just one (player 2). We refer to this effect as to the **implicit modifier** to player 2's payoff.

< **₩** ► < **⇒** ►

utline	Voting power	Experimental setup			R O	esults	Conclu			
iame	e Standard Centered	l (SC)								
6 1	CEF games Экономические игры Многосторонни	е торги - Windows Internet	Explore							
G	🚱 ि 🗸 🖉 http://icef-alumni.hse.ru/games/index.php?s=12405ab99318c057b1aea9870a 💌 🐓 🗙 Понск "Live Search"									
	айл Правка вид Избранное Сервис Справка						- 🔊			
<u>_</u>	Детери ССЕР games Экономические игры Многостор	онн		- 🔊 -		- 🔂 Страница 🕶 🍈	Сервис - »			
		Осталось Предложен	158 се ие игро	кунд ка №1	(Bcer	о набрано				
Вы здесь: Экономические игры > Многосторонние торги РУССКИЙ / ENGLISH Осталось 158 секунд Номер штрока 3 1 (Вы) 2 Голоса 2 3 2 Предлагаемый делёж Предлагаемый делёж Вы 3 1 (Вы) 2										
	Голоса 2 3 2	голосов: 3)	- 2	1 (0.	a a					
	Предлагаемый делёж	Голоса	2	3	2	Вы				
	Отправить предложение	Предлагаем делёж	ый 35	85	0	проголосовали за это предложение				
		Согласие		Y						
	 Инструкция Сумма долей должна составлять 120 	Предложен голосов: 2)	ие игро	ка №3	(Bcer	о набрано				
	 Вы можете заменить сделанное ранее пре отправив новое 	Дложение, Номер игро	ca 3	1 (Вы)	2					
Сате Standard Cer Came Standard Cer Came Standard Cer Came Standard Cer Came Standard Cer Coocococ Came Standard Cer Coocococ Came Standard Cer Coocococ Came Standard Cer Coocococ Came Standard Cer Came Standard Cer Came Standard Cer Came Standard Cer Came Standard Cer Came Standard Cer Came Standard Cer Coocococ Came Standard Cer Came Standard Cer Coocococ Came Standard Cer Cer Coocococ Came Standard Cer Cer Coococ Came Standard Cer Cer Coococ Came Standard Cer Cer Coococ Cer Coococ Coococ Cer Cer Coococ Cer Cer Coococ Cer Cer Cer Cer Cer Cer Cer Cer	 Для принятия предложения требуется 4 го Вы помечены красным цветом, где это уме 	олосов Естно	2	3	2	Проголосовать за это				
	 Заметьте, что ваш логин, показанный вниз страницы, НЕ соответствует вашему номер 	у в игре! Предлагаем делёж	ый 70	25	25	предложение				
	Кроме того, ваш номер в игре может менят раунда к раунду.	ъся от Согласие	Y							

Voting power

Experimental setup

Results Conclusions

Results: SC-games

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Way out: symmetric positioning

- In SC-1C games, each player is shown in the middle of the table in a systematic (clockwise) rotation.
- The difference between players 2 and 3 is mitigated from (49.89 vs. 37.14) to (43.03 vs. 39.41), and becomes insignificant
 - The effect of *implicit modifier* is most likely to completely disappear in a fully symmetric treatment, but we suppose this is not very interesting, being a feature of a particular experiment.
- Explicit modifiers' effect persists for player 3.
- Average number of offers in games S (1) 2.13 (resp., 2.42).

- - 4 回 ト - 4 回 ト

• Average decision time in games S (1) — 30 (resp., 37) seconds.

Voting power

Experimental setup

Results Conclusions

Results: all S-1 games

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

tline	Voting
	00000

Ou

oting power

Experimental setup

Results Conclusions

Summary of the S-1 games

All $(N = 320)$	mean	s.d.	min	max
player 1	35.36	29.04	0	80
player 2	44.53	24.42	0	100
player 3	40.1	27.56	0	111
Game S				
player 1	37.40	29.44	0	80
player 2	46.25	23.89	0	100
player 3	36.34	28.05	0	110
Game 1				
player 1	33.32	28.57	0	80
player 2	42.81	24.91	0	99
player 3	43.85	26.62	0	111

• No significant difference in payoffs for players 1 and 2.

• Significant difference for player 3 at 1-2% confidence level.

• Centered treatment suppresses implicit modifiers.

Outline	Voting power	Experimental setup	Results	Conclusions
			0000000000	0000000000000000
Comes	λ_{2} (λ_{eto})			

Game V: Now 5 votes are required to reach an agreement

player#	1	2	3
votes	3	2	2

Winning coalitions $W = \{\{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$. Banzhaf: $\beta_1 = 3/5, \beta_2 = \beta_3 = 1/5$ predicts that player 1 gets 72 pts and players 2 and 3 — 24 pts each. **Game 2** uses the following *explicit modifiers*:

	1	2	3
1	-	1	1
2	0.99	-	1
3	0.99	1	-

 α indices based on the f^{\times} intensity function: $\alpha_1=0.5575, \alpha_2=\alpha_3=0.2212$

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Voting power

Experimental setup

Results Conclusions

Results:V-2 games

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Voting power

イロト イポト イヨト イヨト

Results: V–2 games

- Player 1 (the veto player) gets even more than the Banzhaf index predicts.
- No significant difference across treatments.
- Effects of greater negative modifiers might be larger.
- Average number of offers in games V (2) 5.94 (resp., 5.63).
- Average decision time in games V (2) 147 (resp., 141) seconds. Timing of decisions requires further attention.

Outline	Voting power	Experimental setup	Results	Conclusions
			0000000000	•••••

Games E–3 (Enlarged)

Game E: Again, 5 votes are required to reach an agreement

player#	1	2	3	4
votes	3	2	2	1

Winning coalitions $W = \{\{1, 2\}, \{1, 3\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$. Here, $\beta_1 = 5/12, \beta_2 = \beta_3 = 3/12, \beta_4 = 1/12$, predicted payoffs are (50, 30, 30,10). **Game 3** employs the following modifiers:

	1	2	3	4
1	-	1	1	1
2	0.99	-	1	1
3	1	1	-	1
4	1	1	1	-

 α indices based on the f^{\times} intensity function:

 $\alpha_1 = 0.5007, \alpha_2 = 0.2131, \alpha_3 = 0.2212, \alpha_4 = 0.0715$

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Dutline	-					
		1		÷		0
	L	,	u	L		

Voting power

Experimental setup

Results Conclusions

・ロン ・回と ・ヨン ・ヨン

æ

The E–3 games

	•	-				

Voting power

Experimental setup

Results Conclusions

æ

Summary of the E-3 games

All $(N = 160)$	mean	s.d.	min	max
player 1	61.15	25.76	0	100
player 2	30.63	23.82	0	70
player 3	24.73	24.54	0	70
player 4	3.49	9.00	0	70
Game E				
player 1	64.34	22.36	0	95
player 2	31.65	23.17	0	70
player 3	21.23	23.72	0	70
player 4	2.76	7.40	0	40
Game 3				
player 1	57.95	28.47	0	100
player 2	29.59	24.48	0	70
player 3	28.23	24.90	0	65
player 4	4.21	10.33	0	70

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Outline	Voting power	Experimental setup	Results	Conclusions
Results: I	E-3 games			

• In **E-game** player 1 gets systematically more than the Banzhaf index prediction at the expense of player 4, while gains of players 2 and 3 are in line with the index, and are greater than in the V-2 treatment.

Outline	Voting power	Experimental setup	Results	Conclusions
				000000000000000000000000000000000000000
Doculto				
ILESUILS.	. L-J gaines			

- In **E-game** player 1 gets systematically more than the Banzhaf index prediction at the expense of player 4, while gains of players 2 and 3 are in line with the index, and are greater than in the V-2 treatment.
- Player 3 gains significantly more on average in the 3-treatment.
 - Thus, a small negative modifier towards player 1 indirectly benefits player 3 (gain per treatment increases by 25%).

Outline	Voting power	Experimental setup	Results	Conclusions
				000000000000000000000000000000000000000
Results	F-3 games			

- In **E-game** player 1 gets systematically more than the Banzhaf index prediction at the expense of player 4, while gains of players 2 and 3 are in line with the index, and are greater than in the V-2 treatment.
- Player 3 gains significantly more on average in the 3-treatment.
 - Thus, a small negative modifier towards player 1 indirectly benefits player 3 (gain per treatment increases by 25%).
- Frequency of coalitions $\{2,3,4\}$ is two times higher in the 3–game than in the E–game.
 - Means that players 2, realizing they do not like player 1, tend to switch to a larger coalition, even though it is clearly more difficult and may involve lowering one's share of the pie (has to be divided among 3 players instead of 2).

(本間) (本語) (本語)

Outline	Voting power	Experimental setup	Results	Conclusions
				000000000000000000000000000000000000000

Game F: 6 votes required to reach an agreement

player $\#$	1	2	3	4
votes	3	3	2	2

Winning coalitions

Games F-4

 $W = \{\{1,2\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\}.$ Banzhaf index is $\beta_1 = \beta_2 = 1/3, \beta_3 = \beta_4 = 1/6, 1$ and 2 get 40, 3 and 4 get 20 each. **Game 4** employs the following modifiers:

	1	2	3	4
1	-	0.8	1	1.01
2	0.8	-	1	1.1
3	1	1	-	1
4	1	1	1	-

 α indices based on f^{\times} intensity function:

 $\alpha_1 = 0.3348, \alpha_2 = 0.3476, \alpha_3 = \alpha_4 = 0.1587,$

Outline	Voting power	Experimental setup	Results	Conclusions
The F-4 g	ames			

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

• 'Large' negative modifier of player 2 for player 1 significantly lowers her earnings (48.43 vs 31.48).

イロト イヨト イヨト イヨト

• On the contrast, player 2's payoff does not change much.

Outline	Voting power	Experimental setup	Results	Conclusions
F-game vs.	. 4-game			

- 'Large' negative modifier of player 2 for player 1 significantly lowers her earnings (48.43 vs 31.48).
- On the contrast, player 2's payoff does not change much.
- Complex interaction of modifiers: high 'dislike' modifiers of 0.8 tend to hurt player 1 more than player 2 because player 2 more strongly prefers larger coalitions.
- Another explanation we investigated that the *psychological features* of the subjects' characters.

< 🗇 > < 🖃 >

		- 1	•	
0	u			

Voting power

Experimental setup

Results Conclusions

∢ 臣 ▶

æ

Summary of the F-4 games

All $(N = 160)$	mean	s.d.	min	max
player 1	39.95	10.97	17.55	63.75
player 2	44.32	9.68	15.81	62.25
player 3	15.24	5.75	5.88	32.50
player 4	15.35	5.87	5.63	31.88
Game F				
player 1	48.43	6.34	39.38	63.75
player 2	45.97	10.02	25.00	62.25
player 3	12.95	4.68	5.88	22.88
player 4	12.66	4.95	5.63	22.88
Game 4				
player 1	31.48	7.46	17.55	41.66
player 2	42.67	9.30	15.81	55.80
player 3	17.53	5.90	7.50	32.50
player 4	18.04	5.58	7.50	31.88

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Voting power

Experimental setup

Results Conclusions

Coalitional outcomes across treatments

coalitions 🔪 games	S–1 games			V-2	games
S-1 coalitions	S	1	V-2 coalitions	V	2
1&2	54	33	1&2	41	40
2&3	29	33	2&3	27	26
2&3	56	59	1&2&3	12	10
1&2&3	21	35	1 alone	0	1
other	0	0	none	0	3
total	160	160	total	80	80
coalitions \setminus games	E–3 games			F-4 ;	games
E-3 coalitions	E	3	F-4 coalitions	F	4
1&2	73	74	1&2	82	64
2&3	57	51	1&3&4	38	31
2&3&4	13	26	2&3&4	33	56
1&2&3	5	1	1&2&3	1	1
1&2&4	1	3	1&2&4	1	0
1&3&4	1	1	1&3	0	1
1&2&3&4	9	3	1&4	0	0
none	1	0	1&2&3&4	4	6
total	160	160	total	160	160

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy

Э

Voting power

Experimental setup

Results Conclusions

イロン イヨン イヨン イヨン

æ

Empirical Banzhaf indices: S–1 games

index	Banzhaf	S	SC	S all	1	1C	1 all
1	40	32.81	38.40	35.82	28.96	34.03	31.68
2	40	54.37	41.60	47.48	48.62	40.30	44.16
3	40	32.81	40.00	36.69	42.41	45.67	44.16
factual							
1		35.25	40.06	37.66	30.90	35.75	33.33
2		52.50	40.50	46.50	47.28	38.83	43.06
3		32.25	39.44	35.84	42.93	45.62	43.86

Voting	p
00000	0

ower

Outline

Experimental setup

Results Conclusions

A (1) > (1) > (1)

Empirical Banzhaf indices: V, E and F-games

	V–2 games		E–3 games			F–4 games			
index	В	V	2	В	E	3	В	F	4
1	72	64.9	64.2	50	53.4	46.3	40	38.4	29.5
2	24	33.2	33.8	30	33.9	36.7	40	36.8	37.1
3	24	21.9	22.0	30	27.7	27.7	20	22.4	26.7
4				10	5.0	9.3	20	22.4	26.7
factual									
1		84.6	86.7		64.3	57.9		48.4	31.7
2		21.2	17.0		31.7	29.4		46.0	43.1
3		14.2	11.6		21.3	28.2		13.0	18.0
4					2.8	4.2		12.7	18.4

The explanation seems to be in unequal prior probability of all coalitions, calling for the use of extended power indices over the standard ones.

Outline	Voting power	Experimental setup	Results	Conclusions
	0000000	0000000	0000000000	00000000000
Conclusions	5			

• Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.

Outline	Voting power	Experimental setup	Results	Conclusions
Conclusior	าร			

- Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.
- Implicit modifiers in the S-game can be suppressed by centering the players and other means.

Outline	Voting power	Experimental setup	Results	Conclusions
Conclu	sions			

- Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.
- Implicit modifiers in the S-game can be suppressed by centering the players and other means.
- Explicit modifiers (probably) do not work in the V-2 games.

向下 イヨト イヨト

Outline	Voting power	Experimental setup	Results	Conclusions
Conclus	sione			

JUNCIUSIONS

- Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.
- Implicit modifiers in the S-game can be suppressed by centering the players and other means.
- Explicit modifiers (probably) do not work in the V-2 games.
- The intensity of connections of other players to the given player *i* (probably) matters more for her payoff: 'being loved is better than love'.

< 🗇 > < 🖃 >
Outline	Voting power	Experimental setup	Results	Conclusions
	0000000	0000000	0000000000	00000000000
Conclusions				

• Explicit modifiers work in the enlarged treatments as well.

_∢≣≯

Outline	Voting power	Experimental setup	Results	Conclusions
				00000000000
Conclu	sions			

- Explicit modifiers work in the enlarged treatments as well.
- Negative modifiers significantly affect the frequency of the respective coalitions in E-games: benefits from a smaller coalition are seen by players as being less, compared to a larger coalition comprising the players the neutral modifiers.

Outline	Voting power	Experimental setup	Results	Conclusions
Conclu	sions			

- Explicit modifiers work in the enlarged treatments as well.
- Negative modifiers significantly affect the frequency of the respective coalitions in E-games: benefits from a smaller coalition are seen by players as being less, compared to a larger coalition comprising the players the neutral modifiers.
- Modifiers of opposite nature interact in a complex manner.

Outline	Voting power	Experimental setup	Results	Conclusions
	0000000	000000	0000000000	000000000000
Conclus	ions			

- Explicit modifiers work in the enlarged treatments as well.
- Negative modifiers significantly affect the frequency of the respective coalitions in E-games: benefits from a smaller coalition are seen by players as being less, compared to a larger coalition comprising the players the neutral modifiers.
- Modifiers of opposite nature interact in a complex manner.
- Predictive power of the classical power indices is ambiguous: the best explanatory variables are player numbers and winning coalitions.

Special thanks to

- Alexei Charkov for programming the experimental software
- Irina Karpenko, Yulia Safarbakova, Ekaterina Shilkina for excellent research assistance
- Alexander Poddiakov and Elena Tougareva for useful feedback
- HSE Scientific foundation for research support
- The audience for your interest and comments

Outline	Voting power	Experimental setup	Results	Conclusions
O & A				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Outline	Voting power	Experimental setup	Results	Conclusions

References

- Aleskerov, F. (2006). Power indices taking into account agents' preferences. In: B. Simeone & F. Pukelsheim (eds), Mathematics and Democracy, Berlin: Springer, pp. 1-18
- Banzhaf, J. (1965). Weighted voting doesn't work: A Mathematical Analysis. Rutgers Law Review 19: 317-343
- Brams, S.J., Affuso, P.J. (1976). Power and size: a new paradox. Theory and Decision, 7:29-56
- Coleman, J.S. (1971). Control of collectivities and the power of a collectivity to act. In: Lieberman B (ed) Social choice. Gordon and Breach, London
- Montero, M., Sefton, M., and Zhang, P. (2008)
 Enlargement and the balance of power: an experimental study. Social Choice and Welfare, 30:69-87
- Shapley L.S., Shubik M. (1954) A method for evaluating the distribution of power in a committee system. American Political Science Review, 48: 787-792