Power and preferences: an experimental approach

Fuad Aleskerov ${ }^{1}$ Alexis Belianin ${ }^{2}$ Kirill Pogorelskiy ${ }^{3}$

${ }^{1}$ Department of Economics, Higher School of Economics, and
Institute of Control Sciences, Moscow, Russia
${ }^{2}$ ICEF Higher School of Economics, and Institute for World Economy and International Relations, Moscow, Russia ${ }^{3}$ Department of Economics, Higher School of Economics, Moscow, Russia

27 October 2009

CEMI, Moscow
(1) Voting power

- Concept of voting power
- Preference-based power indices
(2) Experimental setup
- Experiment by Montero, Sefton and Zhang (MSZ)
- Design and participants
(3) Results
- Games S-1
- Summary of the S-1 games
- Games V-2
- Games E-3
- Games F-4
- Further summaries

4. Conclusions

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)
- in the UN Security Council (should Iran be sanctioned?)

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)
- in the UN Security Council (should Iran be sanctioned?)
- in the IMF (should the developing countries have more voice in the Fund?)

Voting power matters

- in parliaments (will a multi-party parliament pass a new anti-trust law?)
- in the UN Security Council (should Iran be sanctioned?)
- in the IMF (should the developing countries have more voice in the Fund?)
- in boards of directors (do we invest or not?)
- etc...

Voting power: main notions

- N - set of agents (players), $|N|=n$, with generic player i

Voting power: main notions

- N - set of agents (players), $|N|=n$, with generic player i
- $w_{i}>0$ - number of votes i possesses

Voting power: main notions

- N - set of agents (players), $|N|=n$, with generic player i
- $w_{i}>0$ - number of votes i possesses
- q - quota (minimum number of votes for a bill to pass)

Voting power: main notions

- N - set of agents (players), $|N|=n$, with generic player i
- $w_{i}>0$ - number of votes i possesses
- q - quota (minimum number of votes for a bill to pass)
- Coalition $S \in 2^{N}$ is winning iff $\sum_{i \in S} w_{i} \geq q$ (denote W the set of all winning coalitions)

Voting power: main notions

- N - set of agents (players), $|N|=n$, with generic player i
- $w_{i}>0$ - number of votes i possesses
- q - quota (minimum number of votes for a bill to pass)
- Coalition $S \in 2^{N}$ is winning iff $\sum_{i \in S} w_{i} \geq q$ (denote W the set of all winning coalitions)
- $v(S)$ - payoff to the coalition S. Let $v(S)=1$ iff $S \in W, v(S)=0$ iff $S \notin W$

Voting power: main notions

- N - set of agents (players), $|N|=n$, with generic player i
- $w_{i}>0$ - number of votes i possesses
- q - quota (minimum number of votes for a bill to pass)
- Coalition $S \in 2^{N}$ is winning iff $\sum_{i \in S} w_{i} \geq q$ (denote W the set of all winning coalitions)
- $v(S)$ - payoff to the coalition S. Let $v(S)=1$ iff $S \in W, v(S)=0$ iff $S \notin W$
- Player $i \in S$ is pivotal in the coalition S iff S is winning, while $S \backslash\{i\}$ is not

Classical power indices

- Banzhaf (1965): $\beta_{i}=\frac{\sum_{S \subseteq N}(v(S)-v(S \backslash\{i\}))}{\sum_{j=1}^{N} \sum_{S \subset N}(v(S)-v(S \backslash\{j\}))}=\frac{b_{i}}{\sum_{j} b_{j}}$ Here b_{i} is the number of coalitions in W in which i is pivotal. This is a share of player i 's decisiveness in the total decisiveness.

Classical power indices

- Banzhaf (1965): $\beta_{i}=\frac{\sum_{S \subseteq N}(v(S)-v(S \backslash\{i\}))}{\sum_{j=1}^{N} \sum_{S \subset N}(v(S)-v(S \backslash\{j\}))}=\frac{b_{i}}{\sum_{j} b_{j}}$ Here b_{i} is the number of coalitions in W in which i is pivotal. This is a share of player i 's decisiveness in the total decisiveness.

Classical power indices

- Banzhaf (1965): $\beta_{i}=\frac{\sum_{S \subseteq N}(v(S)-v(S \backslash\{i\}))}{\sum_{j=1}^{N} \sum_{S \subseteq N}(v(S)-v(S \backslash\{j\}))}=\frac{b_{i}}{\sum_{j} b_{j}}$ Here b_{i} is the number of coalitions in W in which i is pivotal. This is a share of player i 's decisiveness in the total decisiveness.
- Shapley-Shubik (1954):
$\phi_{i}=\sum_{S \subseteq N} \frac{(|S|-1)!(N-|S|)!}{N!}(v(S)-v(S \backslash\{i\}))$.
This is the share of permutations of all coalitions S in which player i is pivotal in the total number of permutations in which any player is pivotal, i.e. the Shapley value for the cooperative voting game.

Example

Suppose $N=\{1,2,3\}, w_{1}=50, w_{2}=45, w_{3}=5, q=51$. Then $W=\{\{1,2\},\{1,3\},\{1,2,3\}\}$
$b_{1}=3, b_{2}=1, b_{3}=1$.
In this example, Banzhaf $\beta_{1}=3 / 5 ; \beta_{2}=\beta_{3}=1 / 5$.

Shapley-Shubik $\phi_{1}=2 / 3 ; \phi_{2}=\phi_{3}=1 / 6$.

Power indices with preferences

(Aleskerov (2006)). Assume we know the preference profile of each player i about coalescing with any other player: $P_{i}=\left(p_{i 1}, \ldots, p_{i n}\right)$.

Let $p_{i j}$ be (ordinal or cardinal) measures of preference, or explicit modifiers of player i towards coalescing with player j.

Power indices with preferences

(Aleskerov (2006)). Assume we know the preference profile of each player i about coalescing with any other player: $P_{i}=\left(p_{i 1}, \ldots, p_{i n}\right)$.

Let $p_{i j}$ be (ordinal or cardinal) measures of preference, or explicit modifiers of player i towards coalescing with player j.

Let $f_{i}: \times_{j \in S} P_{j} \rightarrow \mathbb{R}$ be the intensity of connections of player i with the other members of the winning coalition S she is part of.

Power indices with preferences

(Aleskerov (2006)). Assume we know the preference profile of each player i about coalescing with any other player: $P_{i}=\left(p_{i 1}, \ldots, p_{i n}\right)$.

Let $p_{i j}$ be (ordinal or cardinal) measures of preference, or explicit modifiers of player i towards coalescing with player j.

Let $f_{i}: \times_{j \in S} P_{j} \rightarrow \mathbb{R}$ be the intensity of connections of player i with the other members of the winning coalition S she is part of.

Let $\chi_{i}=\sum_{S} f_{i}(S)(v(S)-v(S \backslash\{i\}))$ be the sum of intensities of connection of player i over all the winning coalitions in which she is pivotal. Similarly to the Banzhaf index

Power indices with preferences

(Aleskerov (2006)). Assume we know the preference profile of each player i about coalescing with any other player: $P_{i}=\left(p_{i 1}, \ldots, p_{i n}\right)$.

Let $p_{i j}$ be (ordinal or cardinal) measures of preference, or explicit modifiers of player i towards coalescing with player j.

Let $f_{i}: \times_{j \in S} P_{j} \rightarrow \mathbb{R}$ be the intensity of connections of player i with the other members of the winning coalition S she is part of.

Let $\chi_{i}=\sum_{S} f_{i}(S)(v(S)-v(S \backslash\{i\}))$ be the sum of intensities of connection of player i over all the winning coalitions in which she is pivotal. Similarly to the Banzhaf index

$$
\alpha_{i}=\frac{\sum_{S \subseteq N} f_{i}(S)(v(S)-v(S \backslash\{i\}))}{\sum_{j=1}^{N} \sum_{S \subseteq N} f_{j}(S)(v(S)-v(S \backslash\{i\}))}=\frac{\chi_{i}}{\sum_{j=1}^{N} \chi_{j}}
$$

Power indices with preferences

Particular forms of the intensity of connections functions include

- $f_{i}^{+}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - aggregate preferences of player i over joining coalition S

Power indices with preferences

Particular forms of the intensity of connections functions include

- $f_{i}^{+}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - aggregate preferences of player i over joining coalition S
- $f_{i}^{-}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{j i}}{|S|-1}$ - aggregate preferences of other members of coalition S towards player i

Power indices with preferences

Particular forms of the intensity of connections functions include

- $f_{i}^{+}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - aggregate preferences of player i over joining coalition S
- $f_{i}^{-}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{j i}}{|S|-1}$ - aggregate preferences of other members of coalition S towards player i
- $f_{i}^{ \pm}(S)=\frac{f_{i}^{+}(S)+f_{i}^{-}(S)}{2}-$ average intensity with respect to i.

Power indices with preferences

Particular forms of the intensity of connections functions include

- $f_{i}^{+}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - aggregate preferences of player i over joining coalition S
- $f_{i}^{-}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{j i}}{|S|-1}$ - aggregate preferences of other members of coalition S towards player i
- $f_{i}^{ \pm}(S)=\frac{f_{i}^{+}(S)+f_{i}^{-}(S)}{2}-$ average intensity with respect to i.
- $f_{i}^{\times}(S)=\prod_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - product intensity with respect to i.

Power indices with preferences

Particular forms of the intensity of connections functions include

- $f_{i}^{+}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - aggregate preferences of player i over joining coalition S
- $f_{i}^{-}(S)=\sum_{j \in S \backslash\{i\}} \frac{p_{j i}}{|S|-1}$ - aggregate preferences of other members of coalition S towards player i
- $f_{i}^{ \pm}(S)=\frac{f_{i}^{+}(S)+f_{i}^{-}(S)}{2}-$ average intensity with respect to i.
- $f_{i}^{\times}(S)=\prod_{j \in S \backslash\{i\}} \frac{p_{i j}}{|S|-1}$ - product intensity with respect to i.
- $f_{i}^{\dot{\circ}}(S)=\prod_{j \in S \backslash\{i\}} \frac{p_{j i}}{|S|-1}$ - product intensity with respect to j
- ... and many others.

Power indices with preferences: Example

$$
\begin{aligned}
& N=\{1,2,3\}, w_{1}=50, w_{2}=45, w_{3}=5, q=51 \\
& W=\{(1,2),(1,3),(1,2,3)\}
\end{aligned}
$$

Assume preferences are cardinal and given by:

$$
\left\|p_{i j}\right\|=\left\{\begin{array}{l|lll}
\hline & 1 & 2 & 3 \\
\hline 1 & & \frac{1}{2} & 2 \\
2 & 1 & & 1 \\
3 & 2 & 1 & \\
\hline
\end{array}\right.
$$

Product intensities of connections across coalitions are

	$(1,2)$	$(1,3)$	$(1,2,3)$
player1	$f_{1}^{\times}(1,2)=1 / 2$	$f_{1}^{\times}(1,3)=2$	$f_{1}^{\times}(1,2,3)=\left(\frac{1}{2} \cdot 2\right) / 2=1 / 2$
player2	$f_{2}^{\times}(1,2)=1$		$f_{2}^{\times}(1,2,3)=(1 \cdot 1) / 2=1 / 2$
player3		$f_{3}^{\times}(1,3)=2$	$f_{3}^{\times}(1,2,3)=(2 \cdot 1) / 2=1$

Power indices with preferences: example continued

Sums of intensities of connections over the winning coalitions:
Player 1 is pivotal in 3 coalitions, so
$\chi_{1}=f_{1}^{\times}(1,2)+f_{1}^{\times}(1,3)+f_{1}^{\times}(1,2,3)=1 / 2+2+1 / 2=3$
Player 2 is pivotal in 2 coalitions, so
$\chi_{2}=f_{2}^{\times}(1,2)+f_{2}^{\times}(1,2,3)=1+1 / 2=3 / 2$
Player 3 is pivotal in 2 coalitions, so
$\chi_{3}=f_{3}^{\times}(1,3)+f_{3}^{\times}(1,2,3)=2+1=3$

The generalized power indices are:
$\alpha_{1}=\frac{\chi_{1}}{\sum_{i=1}^{3} \chi_{i}}=2 / 5$,
$\alpha_{2}=\frac{\sum_{i=1}^{\chi} \lambda_{2}}{\sum_{i=1}^{3} \chi_{i}}=1 / 5$,
$\alpha_{3}=\frac{\chi_{3}}{\sum_{i=1}^{3} \chi_{i}}=2 / 5$.

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?
- What form of the intensity of connections functions is most warranted empirically?

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?
- What form of the intensity of connections functions is most warranted empirically?
- Generally, what are the factors affecting players' voting behaviour?

Experimental questions

- Do preference-based power indices have better descriptive and/or explanatory power than the classical ones?
- What form of the intensity of connections functions is most warranted empirically?
- Generally, what are the factors affecting players' voting behaviour?
- ... and many others.

Previous works

Brams and Affuso, TD, 1976 notice that adding an extra player affects power indices of the remaining ones ('paradox of the new members').
Kahan and Rapoport, 1984 summarise theoretical and empirical studies of voting in the context of cooperative games.
Selten Kuon, IJGT, 1993 study dynamic bargaining in three-person games
Kagel e.a. 2009 explore the role of veto power
Montero, Sefton, Zhang, Soc.Ch.Welf., 2008 test the paradox of new members experimentally.

Game Standard (MSZ)

Outcomes (MSZ)

b) SYMMETRIC

Design

- All games were played at HSE campus during October 2008 May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively

Design

- All games were played at HSE campus during October 2008 May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively
- In each round of each game the players of a group decide on how to divide 120 points among them. The decision is made by voting, each player's number of votes differ depending on her role.
- In case the players do not come to an agreement within 300 seconds, they receive 0 pts

Design

- All games were played at HSE campus during October 2008May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively
- In each round of each game the players of a group decide on how to divide 120 points among them. The decision is made by voting, each player's number of votes differ depending on her role.
- In case the players do not come to an agreement within 300 seconds, they receive 0 pts
- Each game lasts 10 or 20 rounds (enlarged games), all players are mixed in roles and across groups in each round

Design

- All games were played at HSE campus during October 2008 May 2009, using specially developed experimental software
- Every session 12 or 16 participants play in 4 groups of 3 or 4 players, respectively
- In each round of each game the players of a group decide on how to divide 120 points among them. The decision is made by voting, each player's number of votes differ depending on her role.
- In case the players do not come to an agreement within 300 seconds, they receive 0 pts
- Each game lasts 10 or 20 rounds (enlarged games), all players are mixed in roles and across groups in each round
- 2 games are played in each experimental session in randomized block order. At the end of each session, total gains are paid in cash (1 point $=0.01$ EUR in Russian Rubles).

Participants

- 136 BSc and MSc students of various departments of HSE.
- Recruitment through posters and announcement on the web, volunteers are requested to register online. Subjects are invited by email to a particular game.
- Attendance: required additional recruitment on-site.
- Gender composition: about 50:50, average age - 19.1 years
- Gains of participants in 10-round games: average 7.62 EUR, minimum - 3.81 EUR, maximum - 13.68 EUR;
- Gains in 20-round games: average 10.65 EUR, minimum 5.38 EUR, maximum 16.81 EUR per 1- to 1.5-hour session.

Summary of experimental sessions

1st game	2nd game
S	1
1	V
2	S
SC	1 C
1 C	2
V	SC
E	3
3	E
F	4
4	F

Games $\mathrm{V}-2, \mathrm{E}-3, \mathrm{~F}-4(\mathrm{~S}-1)$: the $2 \times 2(\times 2)$ design, controlling for
(1) sequence of the games
(2) explicit modifiers
(3) position of players on the screen (C)

Game Standard (S)

Player number	1	2 (You)	3
Votes	3	2	2
Proposed shares	60	60	\square
Submit your proposal			

- Instruction
- Shares should sum up to 120
- You can replace your proposal by a newly submitted one
- 4 votes are required to pass a proposal
- You are marked in red where applicable
- Please note that your login name shown at the bottom of this page is NOT your in-game player number! Also beware that your in-game player number may change between rounds

121 seconds left

Player \#2's proposal (Total votes accumulated: 2)

Player number	1	2 (You)	3	
Votes	3	2	2	You have voted for this
Proposed shares	45	75	0	proposal
Acceptance		Y		

Player \#3's proposal (Total votes accumulated: 2)

Player number	1	2 (You)	3	
Votes	3	2	2	Vote for this proposal
Proposed shares	20	30	70	
Acceptance				

Game Standard with modifiers (1)

- Instruction
- Shares should sum up to 120
- You can replace your proposal by a newly submitted one
- 4 votes are required to pass a proposal
- You are marked in red where applicable
- Please note that your login name shown at the bottom of this page is NOT your in-game player number! Also beware that your in-game player number may change between rounds
- If you vote for a proposal and it wins, for each of the players voting together with you, your share in the proposal will be multiplied by the corresponding modifier" value(s) from the table below to get your final payoff in this round.

	1	2	3
1	-	1	1
2	1	-	1.01
3	1	1	-

55 seconds left

Player \#2's proposal (Total votes accumulated: 2)				
Player number	1	2 (You)	3	
Votes	3	2	2	You have voted for
Proposed shares	20	60	40	this proposal
Acceptance		Y		

Player \#3's proposal (Total votes accumulated: 2)

Player number	$\mathbf{1}$	$\mathbf{2 (Y o u)}$	3
Votes	3	2	2
	35	25	60
proposal			

Games S-1 (Standard)

Game S: In this game $\mathbf{4}$ votes are required to reach an agreement

player\#	1	2	3
votes	3	2	2

Winning coalitions: $W=\{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$. Banzhaf index: $\beta_{1}=\beta_{2}=\beta_{3}=1 / 3$, predicting that all players get around 40 pts each. Game 1 uses the following explicit modifiers which multiply the payoff of the row player if she coalesces with the column player:

	1	2	3
1	-	1	1
2	1	-	1.01
3	1	1	-

α indices based on the f^{\times}intensity function:
$\alpha_{1}=\alpha_{3}=0.3327, \alpha_{2}=0.3344$

Results: S-1 games

Results: S-1 games

- Player 3 on average receives systematically more in the 1-treatment (42.08) than in S-treatment (32.25), which difference is significant. Hence explicit modifiers do work for player 3: 'being loved is better than love'.
- There are no treatment effects for players 1 and 2 , but ...

Results: S-1 games

- Player 3 on average receives systematically more in the 1 -treatment (42.08) than in S-treatment (32.25), which difference is significant. Hence explicit modifiers do work for player 3: 'being loved is better than love'.
- There are no treatment effects for players 1 and 2 , but ...
- Player 2 receives systematically more than player 3 in both treatments combined (49.89 vs. 37.14), which difference is significant.
- Same effect as in MSZ, who attribute it to 'framing effect'
- We attribute it to the position of player 2 in the middle of the table on the screen: player 2 has two neighbours (1 and 3), whereas the other two players - just one (player 2). We refer to this effect as to the implicit modifier to player 2's payoff.

Game Standard Centered (SC)

EICEF games | Экономические игры | Многосторонние торги - Windows Internet Explorer
$\leftrightarrow \Theta$

- E http://icef-alumni.hse.ru/games/index.php?s=12405ab99318c057b1aea9870a
 Поиск "Live Search"

Файл Правка Вид Избранное Сервис Справка 0000000

Вы здесь: Экономические игры > Многосторонние торги
РУССКИЙ / ENGLISH

- Инструкция
- Сумма долей должна составлять 120
- Вы можете заменить сделанное ранее предложение, отправив новое
- Для принятия предложения требуется 4 голосов
- Вы помечены красным цветом, где это уместно
- Заметьте, что ваш логин, показанный внизу страницы, НЕ соответствует вашему номеру в игре! Кроме того, ваш номер в игре может меняться от раунда к раунду.

Осталось 158 секунд

Предложение игрока №1 (Всего на6рано голосов: 3)

Номер игрока	3	1 (Вы)	2	
Голоса	2	3	2	Вы проголосовали
Предлагаемый делёж	35	85	0	за это предложение
Согласие		Y		

Предложение игрока №3 (Всего на6рано голосов: 2)

Номер игрока	3	$\begin{gathered} 1 \\ \text { (Вы) } \end{gathered}$	2	Проголосовать за это предложение
Голоса	2	3	2	
Предлагаемый делёж	70	25	25	
Согласие	Y			

Results: SC-games

Fuad Aleskerov, Alexis Belianin, Kirill Pogorelskiy
Power and preferences

Way out: symmetric positioning

- In SC-1C games, each player is shown in the middle of the table in a systematic (clockwise) rotation.
- The difference between players 2 and 3 is mitigated from (49.89 vs. 37.14) to (43.03 vs. 39.41), and becomes insignificant
- The effect of implicit modifier is most likely to completely disappear in a fully symmetric treatment, but we suppose this is not very interesting, being a feature of a particular experiment.
- Explicit modifiers' effect persists for player 3.
- Average number of offers in games S (1) - 2.13 (resp., 2.42).
- Average decision time in games S (1) - 30 (resp., 37) seconds.

Results: all S-1 games

Summary of the S-1 games

All $(N=320)$	mean	s.d.	\min	\max
player 1	35.36	29.04	0	80
player 2	44.53	24.42	0	100
player 3	40.1	27.56	0	111
Game S				
player 1	37.40	29.44	0	80
player 2	46.25	23.89	0	100
player 3	$\mathbf{3 6 . 3 4}$	28.05	0	110
Game 1				
player 1	33.32	28.57	0	80
player 2	42.81	24.91	0	99
player 3	$\mathbf{4 3 . 8 5}$	26.62	0	111

- No significant difference in payoffs for players 1 and 2.
- Significant difference for player 3 at $1-2 \%$ confidence level.
- Centered treatment suppresses implicit modifiers.

Games V-2 (Veto)

Game V: Now 5 votes are required to reach an agreement

player\#	1	2	3
votes	3	2	2

Winning coalitions $W=\{\{1,2\},\{1,3\},\{1,2,3\}\}$. Banzhaf: $\beta_{1}=3 / 5, \beta_{2}=\beta_{3}=1 / 5$ predicts that player 1 gets 72 pts and players 2 and $3-24$ pts each. Game 2 uses the following explicit modifiers:

	1	2	3
1	-	1	1
2	0.99	-	1
3	0.99	1	-

α indices based on the f^{\times}intensity function:
$\alpha_{1}=0.5575, \alpha_{2}=\alpha_{3}=0.2212$

Results:V-2 games

Results: V-2 games

- Player 1 (the veto player) gets even more than the Banzhaf index predicts.
- No significant difference across treatments.
- Effects of greater negative modifiers might be larger.
- Average number of offers in games $\mathrm{V}(2)-5.94$ (resp., 5.63).
- Average decision time in games V (2) - 147 (resp., 141) seconds. Timing of decisions requires further attention.

Games E-3 (Enlarged)

Game E: Again, 5 votes are required to reach an agreement

player\#	1	2	3	4
votes	3	2	2	1

Winning coalitions $W=\{\{1,2\},\{1,3\},\{1,2,3\},\{1,2,4\}$, $\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}$. Here,
$\beta_{1}=5 / 12, \beta_{2}=\beta_{3}=3 / 12, \beta_{4}=1 / 12$, predicted payoffs are (50, $30,30,10)$. Game 3 employs the following modifiers:

	1	2	3	4
1	-	1	1	1
2	0.99	-	1	1
3	1	1	-	1
4	1	1	1	-

α indices based on the f^{\times}intensity function:
$\alpha_{1}=0.5007, \alpha_{2}=0.2131, \alpha_{3}=0.2212, \alpha_{4}=0.0715$

The E-3 games

Summary of the E-3 games

All $(N=160)$	mean	s.d.	\min	\max	
player 1	61.15	25.76	0	100	
player 2	30.63	23.82	0	70	
player 3	24.73	24.54	0	70	
player 4	3.49	9.00	0	70	
Game E					
player 1	$\mathbf{6 4 . 3 4}$	22.36	0	95	
player 2	31.65	23.17	0	70	
player 3	$\mathbf{2 1 . 2 3}$	23.72	0	70	
player 4	2.76	7.40	0	40	
Game 3					
player 1	$\mathbf{5 7 . 9 5}$	28.47	0	100	
player 2	29.59	24.48	0	70	
player 3	$\mathbf{2 8 . 2 3}$	24.90	0	65	
player 4	4.21	10.33	0	70	

Results: E-3 games

- In E-game player 1 gets systematically more than the Banzhaf index prediction at the expense of player 4, while gains of players 2 and 3 are in line with the index, and are greater than in the V -2 treatment.

Results: E-3 games

- In E-game player 1 gets systematically more than the Banzhaf index prediction at the expense of player 4, while gains of players 2 and 3 are in line with the index, and are greater than in the V-2 treatment.
- Player 3 gains significantly more on average in the 3-treatment.
- Thus, a small negative modifier towards player 1 indirectly benefits player 3 (gain per treatment increases by 25%).

Results: E-3 games

- In E-game player 1 gets systematically more than the Banzhaf index prediction at the expense of player 4, while gains of players 2 and 3 are in line with the index, and are greater than in the $V-2$ treatment.
- Player 3 gains significantly more on average in the 3-treatment.
- Thus, a small negative modifier towards player 1 indirectly benefits player 3 (gain per treatment increases by 25%).
- Frequency of coalitions $\{2,3,4\}$ is two times higher in the 3-game than in the E-game.
- Means that players 2, realizing they do not like player 1, tend to switch to a larger coalition, even though it is clearly more difficult and may involve lowering one's share of the pie (has to be divided among 3 players instead of 2).

Games F-4

Game F: 6 votes required to reach an agreement

player\#	1	2	3	4
votes	3	3	2	2

Winning coalitions
$W=\{\{1,2\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}$.
Banzhaf index is $\beta_{1}=\beta_{2}=1 / 3, \beta_{3}=\beta_{4}=1 / 6,1$ and 2 get 40, 3 and 4 get 20 each. Game 4 employs the following modifiers:

	1	2	3	4
1	-	0.8	1	1.01
2	0.8	-	1	1.1
3	1	1	-	1
4	1	1	1	-

α indices based on f^{\times}intensity function:
$\alpha_{1}=0.3348, \alpha_{2}=0.3476, \alpha_{3}=\alpha_{4}=0.1587$.

The F-4 games

F-game vs. 4-game

- 'Large' negative modifier of player 2 for player 1 significantly lowers her earnings (48.43 vs 31.48).
- On the contrast, player 2's payoff does not change much.

F-game vs. 4-game

- 'Large' negative modifier of player 2 for player 1 significantly lowers her earnings (48.43 vs 31.48).
- On the contrast, player 2's payoff does not change much.
- Complex interaction of modifiers: high 'dislike' modifiers of 0.8 tend to hurt player 1 more than player 2 because player 2 more strongly prefers larger coalitions.
- Another explanation we investigated - that the psychological features of the subjects' characters.

Summary of the F-4 games

All $(N=160)$	mean	s.d.	\min	\max
player 1	39.95	10.97	17.55	63.75
player 2	44.32	9.68	15.81	62.25
player 3	15.24	5.75	5.88	32.50
player 4	15.35	5.87	5.63	31.88
Game F				
player 1	$\mathbf{4 8 . 4 3}$	6.34	39.38	63.75
player 2	45.97	10.02	25.00	62.25
player 3	$\mathbf{1 2 . 9 5}$	4.68	5.88	22.88
player 4	$\mathbf{1 2 . 6 6}$	4.95	5.63	22.88
Game 4				
player 1	$\mathbf{3 1 . 4 8}$	7.46	17.55	41.66
player 2	42.67	9.30	15.81	55.80
player 3	$\mathbf{1 7 . 5 3}$	5.90	7.50	32.50
player 4	$\mathbf{1 8 . 0 4}$	5.58	7.50	31.88

Coalitional outcomes across treatments

coalitions \ games	S-1 games			V-2 games	
S-1 coalitions	5	1	V-2 coalitions	V	2
1\&2	54	33	1\&2	41	40
2\&3	29	33	2\&3	27	26
2\&3	56	59	1\&2\&3	12	10
1\&2\&3	21	35	1 alone	0	1
other	0	0	none	0	3
total	160	160	total	80	80
coalitions \ games	$\mathrm{E}-3$ games			F-4 games	
E-3 coalitions	E	3	F-4 coalitions	F	4
1\&2	73	74	1\&2	82	64
2\&3	57	51	1\&3\&4	38	31
2\&3\&4	13	26	2\&3\&4	33	56
1\&2\&3	5	1	$1 \& 2 \& 3$	1	1
1\&2\&4	1	3	$1 \& 2 \& 4$	1	0
1\&3\&4	1	1	$1 \& 3$	0	1
$1 \& 2 \& 3 \& 4$	9	3	1\&4	0	0
none	1	0	1\&2\&3\&4	4	6
total	160	160	total	160	160

Empirical Banzhaf indices: S-1 games

index	Banzhaf	S	SC	S all	1	C	1 all
1	40	32.81	38.40	35.82	28.96	34.03	31.68
2	40	54.37	41.60	47.48	48.62	40.30	44.16
3	40	32.81	40.00	36.69	42.41	45.67	44.16
factual							
1		35.25	40.06	37.66	30.90	35.75	33.33
2		52.50	40.50	46.50	47.28	38.83	43.06
3		32.25	39.44	35.84	42.93	45.62	43.86

Empirical Banzhaf indices: V, E and F-games

	V-2 games			E-3 games			F-4 games		
index	B	V	2	B	E	3	B	F	4
1	72	64.9	64.2	50	53.4	46.3	40	38.4	29.5
2	24	33.2	33.8	30	33.9	36.7	40	36.8	37.1
3	24	21.9	22.0	30	27.7	27.7	20	22.4	26.7
4				10	5.0	9.3	20	22.4	26.7
factual									
1		84.6	86.7		64.3	57.9		48.4	31.7
2		21.2	17.0		31.7	29.4		46.0	43.1
3		14.2	11.6		21.3	28.2		13.0	18.0
4					2.8	4.2		12.7	18.4

The explanation seems to be in unequal prior probability of all coalitions, calling for the use of extended power indices over the standard ones.

Conclusions

- Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.

Conclusions

- Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.
- Implicit modifiers in the S-game can be suppressed by centering the players and other means.

Conclusions

- Explicit modifiers work in all treatments of the S-1 games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.
- Implicit modifiers in the S-game can be suppressed by centering the players and other means.
- Explicit modifiers (probably) do not work in the $\mathrm{V}-2$ games.

Conclusions

- Explicit modifiers work in all treatments of the $\mathrm{S}-1$ games, and increase payoff of player 3 by about 21%. Effects for the other players are not significant.
- Implicit modifiers in the S-game can be suppressed by centering the players and other means.
- Explicit modifiers (probably) do not work in the $\mathrm{V}-2$ games.
- The intensity of connections of other players to the given player i (probably) matters more for her payoff: 'being loved is better than love'.

Conclusions

- Explicit modifiers work in the enlarged treatments as well.

Conclusions

- Explicit modifiers work in the enlarged treatments as well.
- Negative modifiers significantly affect the frequency of the respective coalitions in E-games: benefits from a smaller coalition are seen by players as being less, compared to a larger coalition comprising the players the neutral modifiers.

Conclusions

- Explicit modifiers work in the enlarged treatments as well.
- Negative modifiers significantly affect the frequency of the respective coalitions in E-games: benefits from a smaller coalition are seen by players as being less, compared to a larger coalition comprising the players the neutral modifiers.
- Modifiers of opposite nature interact in a complex manner.

Conclusions

- Explicit modifiers work in the enlarged treatments as well.
- Negative modifiers significantly affect the frequency of the respective coalitions in E-games: benefits from a smaller coalition are seen by players as being less, compared to a larger coalition comprising the players the neutral modifiers.
- Modifiers of opposite nature interact in a complex manner.
- Predictive power of the classical power indices is ambiguous: the best explanatory variables are player numbers and winning coalitions.

Special thanks to

- Alexei Charkov for programming the experimental software
- Irina Karpenko, Yulia Safarbakova, Ekaterina Shilkina for excellent research assistance
- Alexander Poddiakov and Elena Tougareva for useful feedback
- HSE Scientific foundation for research support
- The audience - for your interest and comments

Q \& A

References

- Aleskerov, F. (2006). Power indices taking into account agents' preferences. In: B. Simeone \& F. Pukelsheim (eds), Mathematics and Democracy, Berlin: Springer, pp. 1-18
- Banzhaf, J. (1965). Weighted voting doesn't work: A Mathematical Analysis. Rutgers Law Review 19: 317-343
- Brams, S.J., Affuso, P.J. (1976). Power and size: a new paradox. Theory and Decision, 7:29-56
- Coleman, J.S. (1971). Control of collectivities and the power of a collectivity to act. In: Lieberman B (ed) Social choice. Gordon and Breach, London
- Montero, M., Sefton, M., and Zhang, P. (2008) .Enlargement and the balance of power: an experimental study. Social Choice and Welfare, 30:69-87
- Shapley L.S., Shubik M. (1954) A method for evaluating the distribution of power in a committee system.
American Political Science Review, 48: 787-792

