Information and Over-dissipation in Rent-Seeking Contests

Francesco Fallucchi, Elke Renner and Martin Sefton

Department of Economics, University of Nottingham & Cedex

July 12th 2012

UNITED KINGDOM · CHINA · MALAYSIA

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

< ロ > < 同 > < E > < E > E < の < 0</p>

 \blacktriangleright *n* agents compete for a rent of size *R*

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

- n agents compete for a rent of size R
- agent i receives an endowment w and spends x_i on rent-seeking

< ロ > < 同 > < E > < E > E < の < 0</p>

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

- n agents compete for a rent of size R
- agent i receives an endowment w and spends x_i on rent-seeking

< ロ > < 同 > < E > < E > E < の < 0</p>

 \blacktriangleright $X = \sum x_i$ denotes aggregate expenditures

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

- n agents compete for a rent of size R
- ullet agent i receives an endowment w and spends x_i on rent-seeking

< ロ > < 同 > < E > < E > E < の < 0</p>

- \blacktriangleright $X = \sum x_i$ denotes aggregate expenditures
- agent i receives the rent with probability $\frac{x_i}{X}$

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

- n agents compete for a rent of size R
- agent i receives an endowment w and spends x_i on rent-seeking

< ロ > < 同 > < E > < E > E < の < 0</p>

- \blacktriangleright $X = \sum x_i$ denotes aggregate expenditures
- agent *i* receives the rent with probability $\frac{x_i}{X}$

▶ agent
$$i$$
 earns = $\begin{cases} w - x_i + R & \text{with probability} rac{x_i}{X} \\ w - x_i & \text{otherwise} \end{cases}$

Tullock's model of rent-seeking extensively used to model a variety of contests: lobbying, patent races, litigation lawsuits, grant-seeking, etc. (Konrad, Strategy and Dynamics in Contests, 2009)

- n agents compete for a rent of size R
- agent i receives an endowment w and spends x_i on rent-seeking

- \blacktriangleright $X = \sum x_i$ denotes aggregate expenditures
- agent i receives the rent with probability $\frac{x_i}{X}$
- ► agent i earns = $\begin{cases} w x_i + R & \text{with probability} \frac{x_i}{X} \\ w x_i & \text{otherwise} \end{cases}$
- \blacktriangleright risk neutral equilibrium $x_i = rac{n-1}{n^2}R$

Recent studies...

Now substantial body of experimental evidence shows systematic departures from equilibrium predictions.

・ロト・日本・モト・モート ヨー うへぐ

Recent studies...

Now substantial body of experimental evidence shows systematic departures from equilibrium predictions.

Study	Group Size (N)	Expenditure as % of Equilibrium	
		Expenditure	
Fonseca (IJIO, 2009)	2	200.2	
Abbink et al. (AER, 2010)	2	205.2	
Sheremeta (GEB, 2010)	4	151.6	
Sharamata (Ec. Ing. 2011)	4	133.3	
Sheremeta (EC Ind 2011)	2	131.3	
Chowdhury et al. (2012)	4	174.7	
Faravelli and Stanca (GEB, 2012)	2	110.2	
$\lim_{n\to\infty} at al (2012)$	2	130.0	
Liiii et al. (2012)	3	127.4	

Research Questions

- How does information feedback affect rent seeking expenditures?
 We vary whether players observe other players' choices and payoffs
- How does this effect depends on contest structure?
 We compare:

STOCHASTIC CONTEST

$$\pi(x_i) = \left\{egin{array}{cc} w-x_i+R & ext{ with probability}rac{x_i}{\sum_{j=1}^N x_j} \ w-x_i & ext{ otherwise} \end{array}
ight.$$

DETERMINISTIC CONTEST

$$\pi(x_i) = w - x_i + rac{x_i}{\sum_{j=1}^N x_j}R$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why should Feedback matter? Consider DETERMINISTIC

Payoffs can be rewritten as

$$\pi(x_i)=w-x_i+rac{x_i}{X}R=w+rac{x_i(R-X)}{X}$$

For R > X player choosing highest rent-seeking expenditure gets highest payoff.

For R < X player choosing lowest rent-seeking expenditure gets highest payoff.

Imitating players with the highest payoff leads to X = R.

Why should contest structure matter? Consider STOCHASTIC

- Player i wins rent with probability $\frac{x_i}{X}$
- For a given set of expenditures with mean $ar{x}_{t-1}$ and standard deviation σ_{t-1}

$$E(x_{it}|x_{1t-1},x_{2t-1},...,x_{nt-1})=ar{x}_{t-1}+rac{\sigma_{t-1}^2}{ar{x}_{t-1}}$$

- Random walk with upward drift
- Imitating players with the highest payoff leads to x_i = w (full expenditure)

A Simulation

(n = 3 and R = 1000, 10 groups)

DETERMINISTIC contest

STOCHASTIC contest

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Experimental Design

Groups of 3 subjects (undergraduates at University of Nottingham) interact over 60 rounds in fixed groups:

- Each subject given 1000 points at beginning of round
- Subjects compete for 1000 points prize
- Subject i chooses $x_i \in \{0, 1, ..., 999, 1000\}$
- Earnings = $1000 x_i + \text{ contest earnings}$
- Information feedback

Accumulated points exchanged for $\pounds s$ at the end of session. Session lasted 60 minutes, average earning $=\pounds 9.40$

	Own Feedback	Full Feedback	
Deterministic	10 groups	11 groups	
Stochastic	10 groups	10 groups	

Screenshot OWN information

Screenshot FULL information

Period 1 of 60					
PARTICIPANT	ENDOWMENT	TOKENS PURCHASED	POINTS KEPT	CONTEST EARNINGS	POINT EARNINGS
ME	1000	500	500	0	500
OTHER	1000	150	850	1000	1850
OTHER	1000	50	950	0	950

You kept 500 points. Your contest earnings are 0 points. In this period you earned 500 points.

Your accumulated earnings from period 1 to 1 are: 500 points.

ОК

Deterministic treatments: Group rent-seeking expenditures

Periods 1-30 $\bar{x}_{OWN} = 842, \bar{x}_{FULL} = 884, p - value = 0.48$

Periods 31-60 $\bar{x}_{OWN} = 657, \bar{x}_{FULL} = 794, p - value = 0.02$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○臣 - のへで、

Deterministic treatments: Group rent-seeking expenditures

OWN: expenditure close to Nash Equilibrium

FULL: expenditure higher

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

Distributions of individual expenditures: DETERMINISTIC

500

æ

Stochastic treatments: Group rent-seeking expenditures

Periods 1-30 $\bar{x}_{OWN} = 1152, \bar{x}_{FULL} = 916, p - value = 0.04$

Periods 31-60 $ar{x}_{OWN} = 1110, ar{x}_{FULL} = 752, p-value = 0.02$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○臣 - のへで、

Stochastic treatments: Group rent-seeking expenditures

FULL: expenditure higher than Nash Equilibrium

OWN: expenditure even higher

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

Distributions of individual expenditures: **STOCHASTIC**

Sac

Э

Conclusion

- In deterministic rent-seeking contest expenditures sensitive to information about others
 - With own information expenditures converge to the equilibrium
 - With full information expenditures stabilize at a higher level
- In stochastic contest expenditures even more sensitive to information structure and the effect of information is *reversed*
 - With own information expenditures close to full-dissipation
 - With full information expenditures stabilize at a lower level
- This suggests that contests where contestants only observe own information may result in more substantial costs of rent-seeking

Next step?

Endogenous information sharing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ