Introduction	Method oooooooo	Results 000000	Conclusions o	References

Would You Mind if I Get More? An Experimental Study of the Envy Game

Sandro Casal¹ Werner Güth² Mofei Jia¹ Matteo Ploner³

¹School of Social Science, University of Trento

²MPI of Economics, Jena

³Department of Economics, University of Trento

July 12, 2012

"Money, it's a crime. Share it fairly but don't take a slice of my pie."

Money (The Dark Side of the Moon) - Pink Floyd

"Money, it's a crime. Share it fairly but don't take a slice of my pie."

Money (The Dark Side of the Moon) - Pink Floyd

So far, the Social Preferences literature has focused mainly on "nice" features of human beings

- Altruism (Becker, 1974; Andreoni and Miller, 2002)
- Equity (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000)
- Positive reciprocity (Rabin, 1993; Fehr and Gächter, 1998)
- Guilt (Charness and Dufwenberg, 2006)

but don't take a slice of my pie!!!					
Money, it's a crime.					
Introduction	Method 0000000	Results 000000	Conclusions o	References	

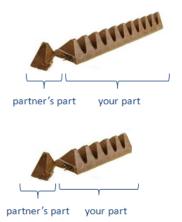
Recently, attention has shifted to "detrimental" features

- Deception (Fischbacher and Heusi, 2008; Houser et al., 2010)
- Aggressiveness (Herrmann et al., 2008)
- Nastiness (Zizzo and Oswald, 2001; Abbink and Sadrieh, 2009)

Introduction	Method oooooooo	Results 000000	Conclusions o	References
Sharing Cho	colate Bars			

Introduction	Method oooooooo	Results 000000	Conclusions o	References

Sharing Chocolate Bars



Introduction	Method oooooooo	Results oooooo	Conclusions o	References

Sharing Chocolate Bars

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	o	
The Envy Gam	e			

- A party chooses how much both parties can earn together
- The other party receives a fixed part

\downarrow

Envy \rightarrow inequ(al)ity helps one party but harms another

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	o	
The Envy Gam	е			

A party chooses how much both parties can earn together

• The other party receives a fixed part

₩

Envy \rightarrow inequ(al)ity helps one party but harms another

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	o	
The Envy Game	е			

- A party chooses how much both parties can earn together
- The other party receives a fixed part

Envy ightarrow inequ(al)ity helps one party but harms another

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	o	
The Envy Game	е			

- A party chooses how much both parties can earn together
- The other party receives a fixed part

Envy ightarrow inequ(al)ity helps one party but harms another

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	O	
The Envy Gam	1e			

- A party chooses how much both parties can earn together
- The other party receives a fixed part

₩

 $\mbox{Envy} \rightarrow \mbox{inequ}(a)\mbox{ity}$ helps one party but harms another

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	o	
The Envy Game	е			

- A party chooses how much both parties can earn together
- The other party receives a fixed part

₩

 $Envy \rightarrow inequ(al)ity$ helps one party but harms another

Introduction	Method	Results	Conclusions	References
○○○○●	0000000	000000	o	
The Envy Gan	ne			

- A party chooses how much both parties can earn together
- The other party receives a fixed part

₩

 $Envy \rightarrow inequ(al)ity$ helps one party but harms another

Introduction 00000	Method ●ooooooo	Results 000000	Conclusions o	References		
Interaction Structure						
The Propose	er: Player X					

- chooses the pie size $\Pi \in \{\Pi \in \mathbb{N} : \underline{\Pi} \le \Pi \le \overline{\Pi}\}$
- knows that her partner (Player Y) is given a fixed share of the pie equal to κ
- is the residual claimant and receives the rest of the pie $(\Pi \kappa)$

Introduction 00000	Method ●0000000	Results 000000	Conclusions o	References
Interaction Structure				
The Proposer:	Player X			

• chooses the pie size $\Pi \in \{\Pi \in \mathbb{N}: \underline{\Pi} \leq \Pi \leq \overline{\Pi}\}$

- knows that her partner (Player Y) is given a fixed share of the pie equal to κ
- is the residual claimant and receives the rest of the pie $(\Pi \kappa)$

Introduction	Method ●OOOOOOO	Results 000000	Conclusions o	References
Interaction Structure				
The Proposer:	Player X			

- chooses the pie size $\Pi \in \{\Pi \in \mathbb{N} : \underline{\Pi} \le \Pi \le \overline{\Pi}\}$
- knows that her partner (Player Y) is given a fixed share of the pie equal to κ
- is the residual claimant and receives the rest of the pie $(\Pi \kappa)$

Introduction	Method ●oooooo	Results 000000	Conclusions o	References
Interaction Structure				
The Proposer:	Player X			

- chooses the pie size $\Pi \in \{\Pi \in \mathbb{N} : \underline{\Pi} \le \Pi \le \overline{\Pi}\}$
- knows that her partner (Player Y) is given a fixed share of the pie equal to κ
- is the residual claimant and receives the rest of the pie $(\Pi \kappa)$

Introduction	Method ○●○○○○○○	Results	Conclusions o	References
Interaction Structure				
The Receiver:	Player Y			

Introduction	Method ooooooo	Results 000000	Conclusions o	References		
Interaction Structure						
The Receiver:	The Receiver: Player Y					

•
$$\delta(\Pi) = 0$$
 meaning *rejection*

Introduction 00000	Method ooooooo	Results 000000	Conclusions o	References
Interaction Structure				
The Receiver:	Player Y			

- $\delta(\Pi) = 0$ meaning *rejection*
- $\delta(\Pi) = 1$ meaning *acceptance*

Introduction 00000	Method o●oooooo	Results 000000	Conclusions o	References		
Interaction Structure						
The Receiver:	Player Y					

- $\delta(\Pi) = 0$ meaning *rejection*
- $\delta(\Pi) = 1$ meaning *acceptance*

Introduction 00000	Method ooooooo	Results 000000	Conclusions o	References		
Interaction Structure						
The Receiver:	Player Y					

- $\delta(\Pi) = 0$ meaning *rejection*
- $\delta(\Pi) = 1$ meaning *acceptance*

ACCEPTED

the payoffs directly follow from the Player X's decision:

 $\pi_{\mathbf{X}} = \mathbf{\Pi} - \kappa$ $\pi_{\mathbf{Y}} = \kappa$

Introduction 00000	Method 0000000	Results 000000	Conclusions o	References		
Interaction Structure						
The Receiver:	The Receiver: Player Y					

- $\delta(\Pi) = 0$ meaning *rejection*
- $\delta(\Pi) = 1$ meaning *acceptance*

the payoffs directly follow from the Player X's decision:

```
\pi_{\mathbf{X}} = \mathbf{\Pi} - \kappa\pi_{\mathbf{Y}} = \kappa
```


Introduction 00000	Method ○●○○○○○○	Results 000000	Conclusions o	References		
Interaction Structure						
The Receiver:	The Receiver: Player Y					

- $\delta(\Pi) = 0$ meaning *rejection*
- $\delta(\Pi) = 1$ meaning *acceptance*

ACCEPTED

the payoffs directly follow from the Player X's decision:

 $\pi_{\mathbf{X}} = \mathbf{\Pi} - \kappa$ $\pi_{\mathbf{Y}} = \kappa$

the payoffs' consequences are experimentally manipulated according to 4 alternative game types

REJECTED

Introduction 00000	Method ○●○○○○○○	Results 000000	Conclusions o	References		
Interaction Structure						
The Receiver:	The Receiver: Player Y					

- $\delta(\Pi) = 0$ meaning *rejection*
- $\delta(\Pi) = 1$ meaning *acceptance*

ACCEPTED

the payoffs directly follow from the Player X's decision:

 $\pi_{\mathbf{X}} = \mathbf{\Pi} - \kappa$ $\pi_{\mathbf{Y}} = \kappa$

the payoffs' consequences are experimentally manipulated according to 4 alternative game types

REJECTED

Introduction	Method oo●ooooo	Results 000000	Conclusions o	References
Interaction Structure				
Game Types				

	Self-damaging			
		NO	YES	
Other-damaging	NO	$(V)oice only \pi_x = \Pi - \kappa \pi_y = \kappa$	$(I) mpunity \pi_x = \Pi - \kappa \pi_y = 0$	
	YES	$(P) unity \\ \pi_x = 0 \\ \pi_y = \kappa$	$(U) Itimatum \pi_x = 0\pi_y = 0$	

Prototypical T	ivnes of Soci	al Preference	e	
Behavioural Predictions				
Introduction 00000	Method ○○○●○○○○	Results 000000	Conclusions o	References

$$U_Y(\pi_x, \pi_y) = \begin{cases} (1-\rho)\pi_y + \rho\pi_x & \text{if } \pi_y \ge \pi_x \\ (1-\sigma)\pi_y + \sigma\pi_x & \text{if } \pi_y < \pi_x \end{cases}$$

- **1** Selfish ($\sigma = \rho = 0$)
- **O Difference-averse** ($\sigma < 0 < \rho < 1$)
- **3** Welfare-enhancing $(1 \ge \rho \ge \sigma > 0)$
- **Output** Competitive ($\sigma \le \rho \le 0$)

Introduction	Method ○○○●○○○○	Results 000000	Conclusions o	References
Behavioural Predictions				
Prototypical Ty	pes of Socia	I Preference	s	

$$U_{Y}(\pi_{x},\pi_{y}) = \begin{cases} (1-\rho)\pi_{y} + \rho\pi_{x} & \text{if } \pi_{y} \geq \pi_{x} \\ (1-\sigma)\pi_{y} + \sigma\pi_{x} & \text{if } \pi_{y} < \pi_{x} \end{cases}$$

- **1** Selfish ($\sigma = \rho = 0$)
- **2** Difference-averse ($\sigma < 0 < \rho < 1$)
- **3** Welfare-enhancing $(1 \ge \rho \ge \sigma > 0)$
- Competitive ($\sigma \le \rho \le 0$)

Introduction 00000	Method ○○○●○○○○	Results 000000	Conclusions o	References
Behavioural Predictions				
Prototypical Ty	pes of Socia	I Preference	s	

$$U_{Y}(\pi_{x},\pi_{y}) = \begin{cases} (1-\rho)\pi_{y} + \rho\pi_{x} & \text{if } \pi_{y} \geq \pi_{x} \\ (1-\sigma)\pi_{y} + \sigma\pi_{x} & \text{if } \pi_{y} < \pi_{x} \end{cases}$$

- **O** Selfish ($\sigma = \rho = 0$)
- **2** Difference-averse ($\sigma < 0 < \rho < 1$)
- **3** Welfare-enhancing $(1 \ge \rho \ge \sigma > 0)$
- **Output** Competitive ($\sigma \leq \rho \leq 0$)

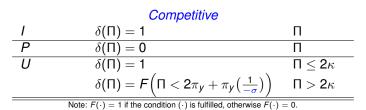
Introduction	Method ○○○●○○○○	Results 000000	Conclusions o	References
Behavioural Predictions				
Prototypical Ty	pes of Socia	I Preference	s	

$$U_{Y}(\pi_{x},\pi_{y}) = \begin{cases} (1-\rho)\pi_{y} + \rho\pi_{x} & \text{if } \pi_{y} \geq \pi_{x} \\ (1-\sigma)\pi_{y} + \sigma\pi_{x} & \text{if } \pi_{y} < \pi_{x} \end{cases}$$

- **O** Selfish ($\sigma = \rho = 0$)
- **2** Difference-averse ($\sigma < 0 < \rho < 1$)
- **3** Welfare-enhancing $(1 \ge \rho \ge \sigma > 0)$
- **Output** Competitive ($\sigma \leq \rho \leq 0$)

Introduction	Method ○○○○●○○○	Results 000000	Conclusions O	References
Robovioural Prodictions				

Table: Behavioral Predictions for Player Y (Summary)


Treatment	Prediction	П Interval
	Selfish	
Ι	$\delta(\Pi) = 1$	П
Р	$\delta(\Pi) = \{0, 1\}$	Π
U	$\delta(\Pi) = 1$	П

Difference-averseI $\delta(\Pi) = 1$ Π P $\delta(\Pi) = 1$ $\Pi \le 2\kappa$ $\delta(\Pi) = F\left(\Pi < 2\pi_y + \pi_y\left(\frac{\rho}{-\sigma}\right)\right)$ $\Pi > 2\kappa$ U $\delta(\Pi) = 1$ $\Pi \le 2\kappa$ $\delta(\Pi) = F\left(\Pi < 2\pi_y + \pi_y\left(\frac{1}{-\sigma}\right)\right)$ $\Pi > 2\kappa$ Note: $F(\cdot) = 1$ if the condition (·) is fulfilled, otherwise $F(\cdot) = 0$.

Introduction	Method ○○○○○●○○	Results 000000	Conclusions o	References
Behavioural Predictions				

Table: Behavioral Predictions for Player Y (Summary)

Treatment	Prediction	П Interval
	Welfare-enhancing	
Ι	$\delta(\Pi) = 1$	П
Р	$\delta(\Pi) = 1$	Π
U	$\delta(\Pi) = 1$	Π

Introduction	Method ○○○○○●○	Results 000000	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	es		

- The experiment was conducted using the z-Tree software (Fischbacher, 2007)
- 128 participants: half of them randomly assigned to role X and the other half to role Y
- Players X could choose a pie size Π in the range from €8 to €24
- The fixed share κ of Player Y was set equal to $\in 6$
- Participants received a show-up fee of €2.50

Introduction 00000	Method ○○○○○●○	Results 000000	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	s		

- The experiment was conducted using the z-Tree software (Fischbacher, 2007)
- 128 participants: half of them randomly assigned to role X and the other half to role Y
- Players X could choose a pie size Π in the range from €8 to €24
- The fixed share κ of Player Y was set equal to $\in 6$
- Participants received a show-up fee of €2.50

Introduction	Method ○○○○○●○	Results 000000	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	s		

- The experiment was conducted using the z-Tree software (Fischbacher, 2007)
- 128 participants: half of them randomly assigned to role X and the other half to role Y
- Players X could choose a pie size Π in the range from €8 to €24
- The fixed share κ of Player Y was set equal to $\in 6$
- Participants received a show-up fee of €2.50

Introduction 00000	Method ○○○○○●○	Results 000000	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	s		

- The experiment was conducted using the z-Tree software (Fischbacher, 2007)
- 128 participants: half of them randomly assigned to role X and the other half to role Y
- Players X could choose a pie size Π in the range from €8 to €24
- The fixed share κ of Player Y was set equal to $\in 6$
- Participants received a show-up fee of €2.50

Introduction 00000	Method ○○○○○●○	Results 000000	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	s		

- The experiment was conducted using the z-Tree software (Fischbacher, 2007)
- 128 participants: half of them randomly assigned to role X and the other half to role Y
- Players X could choose a pie size Π in the range from €8 to €24
- The fixed share κ of Player Y was set equal to $\in 6$
- Participants received a show-up fee of €2.50

Introduction	Method ○○○○○○●	Results 000000	Conclusions o	References
Experimental Design				
Participants ar	nd Procedure	s		

- Participants were exposed to two distinct treatments, in particular:
 - \diamond 32 participants were assigned to the sequence $V \rightarrow I$
 - \diamond 32 participants to the sequence $I \rightarrow V$
 - \diamondsuit 32 participants to the sequence $extsf{P}
 ightarrow extsf{U}$
 - $\diamond~$ 32 participants to the sequence U
 ightarrow P

Introduction	Method ○○○○○○●	Results 000000	Conclusions o	References
Experimental Design				
Participants a	nd Procedur	es		

- Participants were exposed to two distinct treatments, in particular:
 - \diamond 32 participants were assigned to the sequence $V \rightarrow I$
 - > 32 participants to the sequence $I \rightarrow V$
 - $\diamond~$ 32 participants to the sequence $extsf{P}
 ightarrow extsf{U}$
 - \diamondsuit 32 participants to the sequence U
 ightarrow P

Introduction 00000	Method ○○○○○○●	Results 000000	Conclusions o	References
Experimental Design				
Participants ar	nd Procedure	es		

- Participants were exposed to two distinct treatments, in particular:
 - \diamond 32 participants were assigned to the sequence $V \rightarrow I$
 - $\diamond~$ 32 participants to the sequence $I \rightarrow V$

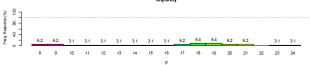
 $\diamond~$ 32 participants to the sequence P
ightarrow U $\diamond~$ 32 participants to the sequence U
ightarrow P

Introduction	Method ○○○○○○●	Results	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	es		

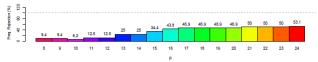
- Participants were exposed to two distinct treatments, in particular:
 - \diamond 32 participants were assigned to the sequence $V \rightarrow I$
 - \diamond 32 participants to the sequence $I \rightarrow V$
 - \diamond 32 participants to the sequence $P \rightarrow U$

ight
angle 32 participants to the sequence U o P

Introduction	Method ○○○○○○●	Results	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	es		


- Participants were exposed to two distinct treatments, in particular:
 - \diamond 32 participants were assigned to the sequence $V \rightarrow I$
 - \diamond 32 participants to the sequence $I \rightarrow V$
 - \diamond 32 participants to the sequence $P \rightarrow U$
 - \diamond 32 participants to the sequence $U \rightarrow P$

Introduction	Method ○○○○○○●	Results	Conclusions o	References
Experimental Design				
Participants a	nd Procedure	es		


- Participants were exposed to two distinct treatments, in particular:
 - \diamond 32 participants were assigned to the sequence $V \rightarrow I$
 - \diamond 32 participants to the sequence $I \rightarrow V$
 - \diamond 32 participants to the sequence $P \rightarrow U$
 - \diamond 32 participants to the sequence $U \rightarrow P$

Punity

Introduction	Method ೦೦೦೦೦೦೦	Results o●oooo	Conclusions o	References
Player Y				
Result 1				

Result 1

For higher claims of Player X, rejections are frequently observed when they are other-damaging. Rejections are either more erratic or almost absent when rejection is symbolic or self-damaging.

Introduction	Method oooooooo	Results oo●ooo	Conclusions o	References
Player Y				

Table: Choices of Player Y (Generalized linear mixed model)

	Coeff (Std. Err.)	
$\Pi \in \{8, \dots 12\}$	$\Pi \in \{13, \dots 18\}$	$\Pi \in \{19, \dots 24\}$
0.531 (8.398)	-0.634 (6.489)	1.325 (9.450)
-3.883 (1.278)**	-6.093 (2.150)**	-1.306 (3.426)
-4.250 (2.269)°	-6.037 (2.246)**	-4.208 (3.994)
-0.217 (0.222)	0.088 (0.141)	-0.051 (0.155)
-0.142 (0.399)	0.194 (0.232)	-0.267 (0.242)
0.441 (0.351)	0.668 (0.199)***	0.509 (0.240)*
-0.124 (0.328)	-0.092 (0.248)	-0.186 (3.527)
-1.762 (2.955)	-4.963 (3.885)	-1.881 (3.527)
-1.459 (1.821)	-0.140 (1.358)	0.258 (1.852)
640 (64)	768 (64)	768 (64)
< 0.001	< 0.001	< 0.001
	0.531 (8.398) -3.883 (1.278)** -4.250 (2.269)° -0.217 (0.222) -0.142 (0.399) 0.441 (0.351) -0.124 (0.328) -1.762 (2.955) -1.459 (1.821) 640 (64)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

***(0.1%);** (1%); *(5%); °(10%) significance level

Introduction	Method oooooooo	Results ooo●oo	Conclusions o	References
Player Y				
Result 2				

Result 2

For fair and unfair choices of Player X, rejection is chosen more parsimoniously when it bears payoff consequences. As soon as the unfairness of the allocation increases with Π size, more rejections are observed when the negative consequences of rejection are borne by Player X.

Introduction	Method	Results	Conclusions	References
00000	oooooooo	○○○○●○	o	
Agreements				

Table: Agreements

	Treatment			
	V	1	Р	U
Actually accepted Π (%)	68.7	96.9	56.2	71.9
Y's average earnings	6.000	5.812	6.000	4.312
X's average earnings	17.719	17.375	7.188	10.969
Loss of social welfare (%)	1.2	3.4	45.1	36.3

Introduction	Method oooooooo	Results ○○○○○●	Conclusions o	References
Agreements				
Result 3				

Result 3

When rejection is other-damaging, Players Y tend to punish greedy choices of Players X. This generates significant losses in terms of social welfare. Interestingly, social welfare losses are higher when they are entirely borne by Player X than when they are shared by both players.

- when the disadvantageous situation is created by the suffering decision maker herself, like in Güth et al. (2012), envy seems to be dominated by efficiency concerns.
- when the disadvantageous situation is imposed by another party, envy seems to beat efficiency seeking.

- when the disadvantageous situation is created by the suffering decision maker herself, like in Güth et al. (2012), envy seems to be dominated by efficiency concerns.
- when the disadvantageous situation is imposed by another party, envy seems to beat efficiency seeking.

- when the disadvantageous situation is created by the suffering decision maker herself, like in Güth et al. (2012), envy seems to be dominated by efficiency concerns.
- when the disadvantageous situation is imposed by another party, envy seems to beat efficiency seeking.

- when the disadvantageous situation is created by the suffering decision maker herself, like in Güth et al. (2012), envy seems to be dominated by efficiency concerns.
- when the disadvantageous situation is imposed by another party, envy seems to beat efficiency seeking.

Introduction	Method oooooooo	Results oooooo	Conclusions o	References

References I

- Abbink, K. and Sadrieh, A. (2009). The pleasure of being nasty. Economics Letters, 105(3):306-308.
- Andreoni, J. and Miller, J. (2002). Giving according to garp: An experimental test of the consistency of preferences for altruism. *Econometrica*, 70(2):737–753.
- Becker, G. S. (1974). A theory of social interactions. Journal of Political Economy, 82(6):1063-93.
- Bolton, G. E. and Ockenfels, A. (2000). Erc: A theory of equity, reciprocity, and competition. *The American Economic Review*, 90(1):pp. 166–193.
- Charness, G. and Dufwenberg, M. (2006). Promises and partnership. Econometrica, 74(6):1579-1601.
- Charness, G. and Rabin, M. (2002). Understanding social preferences with simple tests. The Quarterly Journal of Economics, 117(3):817–869.
- Fehr, E. and Gächter, S. (1998). Reciprocity and economics: The economic implications of homo reciprocans. *European Economic Review*, 42(3-5):845–859.
- Fehr, E. and Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. *Quarterly Journal of Economics*, 114(3):817–868.
- Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments. *Experimental Economics*, 10(2):171–178.
- Fischbacher, U. and Heusi, F. (2008). Lies in disguise. an experimental study on cheating. TWI Research Paper Series 40, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
- Güth, W., Levati, M., and Ploner, M. (2012). An experimental study of the generosity game. Theory and Decision, 72:51–63.
- Herrmann, B., Thöni, C., and Gächter, S. (2008). Antisocial punishment across societies. Science, 319(5868):1362–1367.

Introduction	Method oooooooo	Results 000000	Conclusions o	References
References II				

- Houser, D., Vetter, S., and Winter, J. (2010). Fairness and cheating. Discussion Papers 335, SFB/TR 15 Governance and the Efficiency of Economic Systems, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
- Rabin, M. (1993). Incorporating fairness into game theory and economics. *American Economic Review*, 83(5):1281–1302.
- Zizzo, D. J. and Oswald, A. J. (2001). Are people willing to pay to reduce others' incomes? Annals of Economics and Statistics, 63-64:39–65.